275,931 research outputs found

    Experimental demonstration of complete 180 degree reversal of magnetization in isolated Co-nanomagnets on a PMN-PT substrate with voltage generated strain

    Full text link
    Rotating the magnetization of a shape anisotropic magnetostrictive nanomagnet with voltage-generated stress/strain dissipates much less energy than most other magnetization rotation schemes, but its application to writing bits in non-volatile magnetic memory has been hindered by the fundamental inability of stress/strain to rotate magnetization by full 180 degrees. Normally, stress/strain can rotate the magnetization of a shape anisotropic elliptical nanomagnet by only up to 90 degrees, resulting in incomplete magnetization reversal. Recently, we predicted that applying uniaxial stress sequentially along two different axes that are not collinear with the major or minor axis of the elliptical nanomagnet will rotate the magnetization by full 180 degrees. Here, we demonstrate this complete 180 degree rotation in elliptical Co-nanomagnets (fabricated on a piezoelectric substrate) at room temperature. The two stresses are generated by sequentially applying voltages to two pairs of shorted electrodes placed on the substrate such that the line joining the centers of the electrodes in one pair intersects the major axis of a nanomagnet at ~+30 degrees and the line joining the centers of the electrodes in the other pair intersects at ~ -30 degrees. A finite element analysis has been performed to determine the stress distribution underneath the nanomagnets when one or both pairs of electrodes are activated, and this has been approximately incorporated into a micromagnetic simulation of magnetization dynamics to confirm that the generated stress can produce the observed magnetization rotations. This result portends an extremely energy-efficient non-volatile "straintronic" memory technology predicated on writing bits in nanomagnets with electrically generated stress

    Emergence of scale-free behavior in networks from limited-horizon linking and cost trade-offs

    Full text link
    We study network growth from a fixed set of initially isolated nodes placed at random on the surface of a sphere. The growth mechanism we use adds edges to the network depending on strictly local gain and cost criteria. Only nodes that are not too far apart on the sphere may be considered for being joined by an edge. Given two such nodes, the joining occurs only if the gain of doing it surpasses the cost. Our model is based on a multiplicative parameter lambda that regulates, in a function of node degrees, the maximum geodesic distance that is allowed between nodes for them to be considered for joining. For n nodes distributed uniformly on the sphere, and for lambda*sqrt(n) within limits that depend on cost-related parameters, we have found that our growth mechanism gives rise to power-law distributions of node degree that are invariant for constant lambda*sqrt(n). We also study connectivity- and distance-related properties of the networks

    On the Sustainability of a Monetary Union under External Shocks: a Theoretical Result and Its Application to the Gulf Countries

    Get PDF
    External shocks, be they political or economic, can pose a significant threat to the sustainability of a monetary union. This paper focuses on the openness of a monetary union, and examines how the degrees and characteristics of the sensitivities of its member nations towards external shocks affect the sustainability of the commitment which each of its members made when joining the union. Furthermore, we discuss the sustainability of the prospective monetary union among the Gulf Cooperation Council countries in the light of obtained insights.Monetary Union, Optimum Currency Areas, External Shocks, Gulf Cooperation Council

    Gravitational origin of the weak interaction's chirality

    Get PDF
    We present a new unification of the electro-weak and gravitational interactions based on the joining the weak SU(2) gauge fields with the left handed part of the space-time connection, into a single gauge field valued in the complexification of the local Lorentz group. Hence, the weak interactions emerge as the right handed chiral half of the space-time connection, which explains the chirality of the weak interaction. This is possible, because, as shown by Plebanski, Ashtekar, and others, the other chiral half of the space-time connection is enough to code the dynamics of the gravitational degrees of freedom. This unification is achieved within an extension of the Plebanski action previously proposed by one of us. The theory has two phases. A parity symmetric phase yields, as shown by Speziale, a bi-metric theory with eight degrees of freedom: the massless graviton, a massive spin two field and a scalar ghost. Because of the latter this phase is unstable. Parity is broken in a stable phase where the eight degrees of freedom arrange themselves as the massless graviton coupled to an SU(2) triplet of chirally coupled Yang-Mills fields. It is also shown that under this breaking a Dirac fermion expresses itself as a chiral neutrino paired with a scalar field with the quantum numbers of the Higgs.Comment: 21 page

    The Ambiguous Independent and Adequate State Ground in Criminal Cases: Federalism Along a Mobius Strip

    Get PDF
    In topology a Mobius strip is a one-sided surface formed by holding one end of a rectangle fixed, rotating the opposite end 180 degrees, and joining the two ends.\u27In Supreme Court jurisdiction the independent and adequate state ground doctrine forms a similar figure by joining, on one side, the power of the Court to revise the judgments of state courts on issues of federal law with, on the other side, the Court\u27s lack of any general power to re examine issues of state law

    On membrane interactions and a three-dimensional analog of Riemann surfaces

    Get PDF
    Membranes in M-theory are expected to interact via splitting and joining processes. We study these effects in the pp-wave matrix model, in which they are associated with transitions between states in sectors built on vacua with different numbers of membranes. Transition amplitudes between such states receive contributions from BPS instanton configurations interpolating between the different vacua. Various properties of the moduli space of BPS instantons are known, but there are very few known examples of explicit solutions. We present a new approach to the construction of instanton solutions interpolating between states containing arbitrary numbers of membranes, based on a continuum approximation valid for matrices of large size. The proposed scheme uses functions on a two-dimensional space to approximate matrices and it relies on the same ideas behind the matrix regularisation of membrane degrees of freedom in M-theory. We show that the BPS instanton equations have a continuum counterpart which can be mapped to the three-dimensional Laplace equation through a sequence of changes of variables. A description of configurations corresponding to membrane splitting/joining processes can be given in terms of solutions to the Laplace equation in a three-dimensional analog of a Riemann surface, consisting of multiple copies of R^3 connected via a generalisation of branch cuts. We discuss various general features of our proposal and we also present explicit analytic solutions.Comment: 64 pages, 17 figures. V2: An appendix, a figure and references added; various minor changes and improvement

    Low temperature joining of ceramic composites

    Get PDF
    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix

    Path-sum solution of the Weyl Quantum Walk in 3+1 dimensions

    Full text link
    We consider the Weyl quantum walk in 3+1 dimensions, that is a discrete-time walk describing a particle with two internal degrees of freedom moving on a Cayley graph of the group Z3\mathbb Z^3, that in an appropriate regime evolves according to Weyl's equation. The Weyl quantum walk was recently derived as the unique unitary evolution on a Cayley graph of Z3\mathbb Z^3 that is homogeneous and isotropic. The general solution of the quantum walk evolution is provided here in the position representation, by the analytical expression of the propagator, i.e. transition amplitude from a node of the graph to another node in a finite number of steps. The quantum nature of the walk manifests itself in the interference of the paths on the graph joining the given nodes. The solution is based on the binary encoding of the admissible paths on the graph and on the semigroup structure of the walk transition matrices.Comment: 13 page
    corecore