6 research outputs found

    Learning Geometric Concepts with Nasty Noise

    Full text link
    We study the efficient learnability of geometric concept classes - specifically, low-degree polynomial threshold functions (PTFs) and intersections of halfspaces - when a fraction of the data is adversarially corrupted. We give the first polynomial-time PAC learning algorithms for these concept classes with dimension-independent error guarantees in the presence of nasty noise under the Gaussian distribution. In the nasty noise model, an omniscient adversary can arbitrarily corrupt a small fraction of both the unlabeled data points and their labels. This model generalizes well-studied noise models, including the malicious noise model and the agnostic (adversarial label noise) model. Prior to our work, the only concept class for which efficient malicious learning algorithms were known was the class of origin-centered halfspaces. Specifically, our robust learning algorithm for low-degree PTFs succeeds under a number of tame distributions -- including the Gaussian distribution and, more generally, any log-concave distribution with (approximately) known low-degree moments. For LTFs under the Gaussian distribution, we give a polynomial-time algorithm that achieves error O(ϵ)O(\epsilon), where ϵ\epsilon is the noise rate. At the core of our PAC learning results is an efficient algorithm to approximate the low-degree Chow-parameters of any bounded function in the presence of nasty noise. To achieve this, we employ an iterative spectral method for outlier detection and removal, inspired by recent work in robust unsupervised learning. Our aforementioned algorithm succeeds for a range of distributions satisfying mild concentration bounds and moment assumptions. The correctness of our robust learning algorithm for intersections of halfspaces makes essential use of a novel robust inverse independence lemma that may be of broader interest

    On the Complexity of the Inverse Semivalue Problem for Weighted Voting Games

    Full text link
    Weighted voting games are a family of cooperative games, typically used to model voting situations where a number of agents (players) vote against or for a proposal. In such games, a proposal is accepted if an appropriately weighted sum of the votes exceeds a prespecified threshold. As the influence of a player over the voting outcome is not in general proportional to her assigned weight, various power indices have been proposed to measure each player's influence. The inverse power index problem is the problem of designing a weighted voting game that achieves a set of target influences according to a predefined power index. In this work, we study the computational complexity of the inverse problem when the power index belongs to the class of semivalues. We prove that the inverse problem is computationally intractable for a broad family of semivalues, including all regular semivalues. As a special case of our general result, we establish computational hardness of the inverse problem for the Banzhaf indices and the Shapley values, arguably the most popular power indices.Comment: To appear in AAAI 201

    Theoretical Foundations of Adversarially Robust Learning

    Full text link
    Despite extraordinary progress, current machine learning systems have been shown to be brittle against adversarial examples: seemingly innocuous but carefully crafted perturbations of test examples that cause machine learning predictors to misclassify. Can we learn predictors robust to adversarial examples? and how? There has been much empirical interest in this contemporary challenge in machine learning, and in this thesis, we address it from a theoretical perspective. In this thesis, we explore what robustness properties can we hope to guarantee against adversarial examples and develop an understanding of how to algorithmically guarantee them. We illustrate the need to go beyond traditional approaches and principles such as empirical risk minimization and uniform convergence, and make contributions that can be categorized as follows: (1) introducing problem formulations capturing aspects of emerging practical challenges in robust learning, (2) designing new learning algorithms with provable robustness guarantees, and (3) characterizing the complexity of robust learning and fundamental limitations on the performance of any algorithm.Comment: PhD Thesi
    corecore