19,176 research outputs found

    Sufficient degree conditions for graph embeddings

    Get PDF
    In this dissertation, we focus on the sufficient conditions to guarantee one graph being the subgraph of another. In Chapter 2, we discuss list packing, a modification of the idea of graph packing. This is fitting one graph in the complement of another graph. Sauer and Spencer showed a sufficient bound involving maximum degrees, and this was further explored by Kaul and Kostochka to characterize all extremal cases. Bollobas and Eldridge (and independently Sauer and Spencer) developed edge sum bounds to guarantee packing. In Chapter 2, we introduce the new idea of list packing and use it to prove stronger versions of many existing theorems. Namely, for two graphs, if the product of the maximum degrees is small or if the total number of edges is small, then the graphs pack. In Chapter 3, we discuss the problem of finding k vertex-disjoint cycles in a multigraph. This problem originated from a conjecture of Erdos and has led to many different results. Corradi and Hajnal looked at a minimum degree condition. Enomoto and Wang independently looked at a minimum degree-sum condition. More recently, Kierstead, Kostochka, and Yeager characterized the extremal cases to improve these bounds. In Chapter 3, we improve on the multigraph degree-sum result. We characterize all multigraphs that have simple Ore-degree at least 4k -3 , but do not contain k vertex-disjoint cycles. Moreover, we provide a polynomial time algorithm for deciding if a graph contains k vertex-disjoint cycles. Lastly, in Chapter 4, we consider the same problem but with chorded cycles. Finkel looked at the minimum degree condition while Chiba, Fujita, Gao, and Li addressed the degree-sum condition. More recently, Molla, Santana, and Yeager improved this degree-sum result, and in Chapter 4, we will improve on this further

    Extremal problems on cycle structure and colorings of graphs

    Get PDF
    In this Thesis, we consider two main themes: conditions that guarantee diverse cycle structure within a graph, and the existence of strong edge-colorings for a specific family of graphs. In Chapter 2 we consider a question closely related to the Matthews-Sumner conjecture, which states that every 4-connected claw-free graph is Hamiltonian. Since there exists an infinite family of 4-connected claw-free graphs that are not pancyclic, Gould posed the problem of characterizing the pairs of graphs, {X,Y}, such that every 4-connected {X,Y}-free graph is pancyclic. In this chapter we describe a family of pairs of graphs such that if every 4-connected {X,Y}-free graph is pancyclic, then {X,Y} is in this family. Furthermore, we show that every 4-connected {K_(1,3),N(4,1,1)}-free graph is pancyclic. This result, together with several others, completes a characterization of the family of subgraphs, F such that for all H in ∈, every 4-connected {K_(1,3), H}-free graph is pancyclic. In Chapters and 4 we consider refinements of results on cycles and chorded cycles. In 1963, Corrádi and Hajnal proved a conjecture of Erdös, showing that every graph G on at least 3k vertices with minimum degree at least 2k contains k disjoint cycles. This result was extended by Enomoto and Wang, who independently proved that graphs on at least 3kvertices with minimum degree-sum at least 4k - 1 also contain k disjoint cycles. Both results are best possible, and recently, Kierstead, Kostochka, Molla, and Yeager characterized their sharpness examples. A chorded cycle analogue to the result of Corrádi and Hajnal was proved by Finkel, and a similar analogue to the result of Enomoto and Wang was proved by Chiba, Fujita, Gao, and Li. In Chapter 3 we characterize the sharpness examples to these statements, which provides a chorded cycle analogue to the characterization of Kierstead et al. In Chapter 4 we consider another result of Chiba et al., which states that for all integers r and s with r + s ≥ 1, every graph G on at least 3r + 4s vertices with ẟ(G) ≥ 2r+3s contains r disjoint cycles and s disjoint chorded cycles. We provide a characterization of the sharpness examples to this result, which yields a transition between the characterization of Kierstead et al. and the main result of Chapter 3. In Chapter 5 we move to the topic of edge-colorings, considering a variation known as strong edge-coloring. In 1990, Faudree, Gyárfás, Schelp, and Tuza posed several conjectures regarding strong edge-colorings of subcubic graphs. In particular, they conjectured that every subcubic planar graph has a strong edge-coloring using at most nine colors. We prove a slightly stronger form of this conjecture, showing that it holds for all subcubic planar loopless multigraphs
    • …
    corecore