29,131 research outputs found

    Upward-closed hereditary families in the dominance order

    Get PDF
    The majorization relation orders the degree sequences of simple graphs into posets called dominance orders. As shown by Hammer et al. and Merris, the degree sequences of threshold and split graphs form upward-closed sets within the dominance orders they belong to, i.e., any degree sequence majorizing a split or threshold sequence must itself be split or threshold, respectively. Motivated by the fact that threshold graphs and split graphs have characterizations in terms of forbidden induced subgraphs, we define a class F\mathcal{F} of graphs to be dominance monotone if whenever no realization of ee contains an element F\mathcal{F} as an induced subgraph, and dd majorizes ee, then no realization of dd induces an element of F\mathcal{F}. We present conditions necessary for a set of graphs to be dominance monotone, and we identify the dominance monotone sets of order at most 3.Comment: 15 pages, 6 figure

    Upward-Closed Hereditary Families In The Dominance Order

    Get PDF
    The majorization relation orders the degree sequences of simple graphs into posets called dominance orders. As shown by Ruch and Gutman (1979) and Merris (2002), the degree sequences of threshold and split graphs form upward-closed sets within the dominance orders they belong to, i.e., any degree sequence majorizing a split or threshold sequence must itself be split or threshold, respectively. Motivated by the fact that threshold graphs and split graphs have characterizations in terms of forbidden induced subgraphs, we define a class F of graphs to be dominance monotone if whenever no realization of e contains an element F as an induced subgraph, and d majorizes e, then no realization of d induces an element of F. We present conditions necessary for a set of graphs to be dominance monotone, and we identify the dominance monotone sets of order at most 3

    Upward-closed hereditary families in the dominance order

    Get PDF
    The majorization relation orders the degree sequences of simple graphs into posets called dominance orders. As shown by Ruch and Gutman (1979) and Merris (2002), the degree sequences of threshold and split graphs form upward-closed sets within the dominance orders they belong to, i.e., any degree sequence majorizing a split or threshold sequence must itself be split or threshold, respectively. Motivated by the fact that threshold graphs and split graphs have characterizations in terms of forbidden induced subgraphs, we define a class F of graphs to be dominance monotone if whenever no realization of e contains an element F as an induced subgraph, and d majorizes e, then no realization of d induces an element of F. We present conditions necessary for a set of graphs to be dominance monotone, and we identify the dominance monotone sets of order at most 3

    Efficient Construction of Probabilistic Tree Embeddings

    Get PDF
    In this paper we describe an algorithm that embeds a graph metric (V,dG)(V,d_G) on an undirected weighted graph G=(V,E)G=(V,E) into a distribution of tree metrics (T,DT)(T,D_T) such that for every pair u,vVu,v\in V, dG(u,v)dT(u,v)d_G(u,v)\leq d_T(u,v) and ET[dT(u,v)]O(logn)dG(u,v){\bf{E}}_{T}[d_T(u,v)]\leq O(\log n)\cdot d_G(u,v). Such embeddings have proved highly useful in designing fast approximation algorithms, as many hard problems on graphs are easy to solve on tree instances. For a graph with nn vertices and mm edges, our algorithm runs in O(mlogn)O(m\log n) time with high probability, which improves the previous upper bound of O(mlog3n)O(m\log^3 n) shown by Mendel et al.\,in 2009. The key component of our algorithm is a new approximate single-source shortest-path algorithm, which implements the priority queue with a new data structure, the "bucket-tree structure". The algorithm has three properties: it only requires linear time in the number of edges in the input graph; the computed distances have a distance preserving property; and when computing the shortest-paths to the kk-nearest vertices from the source, it only requires to visit these vertices and their edge lists. These properties are essential to guarantee the correctness and the stated time bound. Using this shortest-path algorithm, we show how to generate an intermediate structure, the approximate dominance sequences of the input graph, in O(mlogn)O(m \log n) time, and further propose a simple yet efficient algorithm to converted this sequence to a tree embedding in O(nlogn)O(n\log n) time, both with high probability. Combining the three subroutines gives the stated time bound of the algorithm. Then we show that this efficient construction can facilitate some applications. We proved that FRT trees (the generated tree embedding) are Ramsey partitions with asymptotically tight bound, so the construction of a series of distance oracles can be accelerated

    Random Networks Tossing Biased Coins

    Full text link
    In statistical mechanical investigations on complex networks, it is useful to employ random graphs ensembles as null models, to compare with experimental realizations. Motivated by transcription networks, we present here a simple way to generate an ensemble of random directed graphs with, asymptotically, scale-free outdegree and compact indegree. Entries in each row of the adjacency matrix are set to be zero or one according to the toss of a biased coin, with a chosen probability distribution for the biases. This defines a quick and simple algorithm, which yields good results already for graphs of size n ~ 100. Perhaps more importantly, many of the relevant observables are accessible analytically, improving upon previous estimates for similar graphs

    Random graphs from a block-stable class

    Full text link
    A class of graphs is called block-stable when a graph is in the class if and only if each of its blocks is. We show that, as for trees, for most nn-vertex graphs in such a class, each vertex is in at most (1+o(1))logn/loglogn(1+o(1)) \log n / \log\log n blocks, and each path passes through at most 5(nlogn)1/25 (n \log n)^{1/2} blocks. These results extend to `weakly block-stable' classes of graphs

    Kings and Heirs: A Characterization of the (2,2)-domination Graphs of Tournaments

    Get PDF
    In 1980, Maurer coined the phrase king when describing any vertex of a tournament that could reach every other vertex in two or fewer steps. A (2,2)-domination graph of a digraph D, dom2,2(D), has vertex set V(D), the vertices of D, and edge uv whenever u and v each reach all other vertices of D in two or fewer steps. In this special case of the (i,j)-domination graph, we see that Maurer’s theorem plays an important role in establishing which vertices form the kings that create some of the edges in dom2,2(D). But of even more interest is that we are able to use the theorem to determine which other vertices, when paired with a king, form an edge in dom2,2(D). These vertices are referred to as heirs. Using kings and heirs, we are able to completely characterize the (2,2)-domination graphs of tournaments

    On the eigenvalues of Cayley graphs on the symmetric group generated by a complete multipartite set of transpositions

    Full text link
    Given a finite simple graph \cG with nn vertices, we can construct the Cayley graph on the symmetric group SnS_n generated by the edges of \cG, interpreted as transpositions. We show that, if \cG is complete multipartite, the eigenvalues of the Laplacian of \Cay(\cG) have a simple expression in terms of the irreducible characters of transpositions, and of the Littlewood-Richardson coefficients. As a consequence we can prove that the Laplacians of \cG and of \Cay(\cG) have the same first nontrivial eigenvalue. This is equivalent to saying that Aldous's conjecture, asserting that the random walk and the interchange process have the same spectral gap, holds for complete multipartite graphs.Comment: 29 pages. Includes modification which appear on the published version in J. Algebraic Combi
    corecore