568 research outputs found

    One brick at a time: a survey of inductive constructions in rigidity theory

    Full text link
    We present a survey of results concerning the use of inductive constructions to study the rigidity of frameworks. By inductive constructions we mean simple graph moves which can be shown to preserve the rigidity of the corresponding framework. We describe a number of cases in which characterisations of rigidity were proved by inductive constructions. That is, by identifying recursive operations that preserved rigidity and proving that these operations were sufficient to generate all such frameworks. We also outline the use of inductive constructions in some recent areas of particularly active interest, namely symmetric and periodic frameworks, frameworks on surfaces, and body-bar frameworks. We summarize the key outstanding open problems related to inductions.Comment: 24 pages, 12 figures, final versio

    Spanning Trails and Spanning Trees

    Get PDF
    There are two major parts in my dissertation. One is based on spanning trail, the other one is comparing spanning tree packing and covering.;The results of the spanning trail in my dissertation are motivated by Thomassen\u27s Conjecture that every 4-connected line graph is hamiltonian. Harary and Nash-Williams showed that the line graph L( G) is hamiltonian if and only if the graph G has a dominating eulerian subgraph. Also, motivated by the Chinese Postman Problem, Boesch et al. introduced supereulerian graphs which contain spanning closed trails. In the spanning trail part of my dissertation, I proved some results based on supereulerian graphs and, a more general case, spanning trails.;Let alpha(G), alpha\u27(G), kappa( G) and kappa\u27(G) denote the independence number, the matching number, connectivity and edge connectivity of a graph G, respectively. First, we discuss the 3-edge-connected graphs with bounded edge-cuts of size 3, and prove that any 3-edge-connected graph with at most 11 edge cuts of size 3 is supereulerian, which improves Catlin\u27s result. Second, having the idea from Chvatal-Erdos Theorem which states that every graph G with kappa(G) ≥ alpha( G) is hamiltonian, we find families of finite graphs F 1 and F2 such that if a connected graph G satisfies kappa\u27(G) ≥ alpha(G) -- 1 (resp. kappa\u27(G) ≥ 3 and alpha\u27( G) ≤ 7), then G has a spanning closed trail if and only if G is not contractible to a member of F1 (resp. F2). Third, by solving a conjecture posed in [Discrete Math. 306 (2006) 87-98], we prove if G is essentially 4-edge-connected, then for any edge subset X0 ⊆ E(G) with |X0| ≤ 3 and any distinct edges e, e\u27 2 ∈ E(G), G has a spanning ( e, e\u27)-trail containing all edges in X0.;The results on spanning trees in my dissertation concern spanning tree packing and covering. We find a characterization of spanning tree packing and covering based on degree sequence. Let tau(G) be the maximum number of edge-disjoint spanning trees in G, a(G) be the minimum number of spanning trees whose union covers E(G). We prove that, given a graphic sequence d = (d1, d2···dn) (d1 ≥ d2 ≥···≥ dn) and integers k2 ≥ k1 \u3e 0, there exists a simple graph G with degree sequence d satisfying k 1 ≤ tau(G) ≤ a(G) ≤ k2 if and only if dn ≥ k1 and 2k1(n -- 1) ≤ Sigmani =1 di ≤ 2k2( n -- 1 |I| -- 1) + 2Sigma i∈I di, where I = {lcub}i : di \u3c k2{rcub}

    Connectivity and spanning trees of graphs

    Get PDF
    This dissertation focuses on connectivity, edge connectivity and edge-disjoint spanning trees in graphs and hypergraphs from the following aspects.;1. Eigenvalue aspect. Let lambda2(G) and tau( G) denote the second largest eigenvalue and the maximum number of edge-disjoint spanning trees of a graph G, respectively. Motivated by a question of Seymour on the relationship between eigenvalues of a graph G and bounds of tau(G), Cioaba and Wong conjectured that for any integers d, k ≥ 2 and a d-regular graph G, if lambda 2(G)) \u3c d -- 2k-1d+1 , then tau(G) ≥ k. They proved the conjecture for k = 2, 3, and presented evidence for the cases when k ≥ 4. We propose a more general conjecture that for a graph G with minimum degree delta ≥ 2 k ≥ 4, if lambda2(G) \u3c delta -- 2k-1d+1 then tau(G) ≥ k. We prove the conjecture for k = 2, 3 and provide partial results for k ≥ 4. We also prove that for a graph G with minimum degree delta ≥ k ≥ 2, if lambda2( G) \u3c delta -- 2k-1d +1 , then the edge connectivity is at least k. As corollaries, we investigate the Laplacian and signless Laplacian eigenvalue conditions on tau(G) and edge connectivity.;2. Network reliability aspect. With graphs considered as natural models for many network design problems, edge connectivity kappa\u27(G) and maximum number of edge-disjoint spanning trees tau(G) of a graph G have been used as measures for reliability and strength in communication networks modeled as graph G. Let kappa\u27(G) = max{lcub}kappa\u27(H) : H is a subgraph of G{rcub}. We present: (i) For each integer k \u3e 0, a characterization for graphs G with the property that kappa\u27(G) ≤ k but for any additional edge e not in G, kappa\u27(G + e) ≥ k + 1. (ii) For any integer n \u3e 0, a characterization for graphs G with |V(G)| = n such that kappa\u27(G) = tau( G) with |E(G)| minimized.;3. Generalized connectivity. For an integer l ≥ 2, the l-connectivity kappal( G) of a graph G is defined to be the minimum number of vertices of G whose removal produces a disconnected graph with at least l components or a graph with fewer than l vertices. Let k ≥ 1, a graph G is called (k, l)-connected if kappa l(G) ≥ k. A graph G is called minimally (k, l)-connected if kappal(G) ≥ k but ∀e ∈ E( G), kappal(G -- e) ≤ k -- 1. A structural characterization for minimally (2, l)-connected graphs and some extremal results are obtained. These extend former results by Dirac and Plummer on minimally 2-connected graphs.;4. Degree sequence aspect. An integral sequence d = (d1, d2, ···, dn) is hypergraphic if there is a simple hypergraph H with degree sequence d, and such a hypergraph H is a realization of d. A sequence d is r-uniform hypergraphic if there is a simple r- uniform hypergraph with degree sequence d. It is proved that an r-uniform hypergraphic sequence d = (d1, d2, ···, dn) has a k-edge-connected realization if and only if both di ≥ k for i = 1, 2, ···, n and i=1ndi≥ rn-1r-1 , which generalizes the formal result of Edmonds for graphs and that of Boonyasombat for hypergraphs.;5. Partition connectivity augmentation and preservation. Let k be a positive integer. A hypergraph H is k-partition-connected if for every partition P of V(H), there are at least k(| P| -- 1) hyperedges intersecting at least two classes of P. We determine the minimum number of hyperedges in a hypergraph whose addition makes the resulting hypergraph k-partition-connected. We also characterize the hyperedges of a k-partition-connected hypergraph whose removal will preserve k-partition-connectedness

    Discrete Geometry

    Get PDF
    The workshop on Discrete Geometry was attended by 53 participants, many of them young researchers. In 13 survey talks an overview of recent developments in Discrete Geometry was given. These talks were supplemented by 16 shorter talks in the afternoon, an open problem session and two special sessions. Mathematics Subject Classification (2000): 52Cxx. Abstract regular polytopes: recent developments. (Peter McMullen) Counting crossing-free configurations in the plane. (Micha Sharir) Geometry in additive combinatorics. (József Solymosi) Rigid components: geometric problems, combinatorial solutions. (Ileana Streinu) • Forbidden patterns. (János Pach) • Projected polytopes, Gale diagrams, and polyhedral surfaces. (Günter M. Ziegler) • What is known about unit cubes? (Chuanming Zong) There were 16 shorter talks in the afternoon, an open problem session chaired by Jesús De Loera, and two special sessions: on geometric transversal theory (organized by Eli Goodman) and on a new release of the geometric software Cinderella (Jürgen Richter-Gebert). On the one hand, the contributions witnessed the progress the field provided in recent years, on the other hand, they also showed how many basic (and seemingly simple) questions are still far from being resolved. The program left enough time to use the stimulating atmosphere of the Oberwolfach facilities for fruitful interaction between the participants

    Mini-Workshop: Dimers, Ising and Spanning Trees beyond the Critical Isoradial Case (online meeting)

    Get PDF
    The goal of this mini-workshop is to gather specialists of the dimer, Ising and spanning tree models around recent and ongoing progress in two directions. One is understanding the connection to the spectral curve of these models in the cases when the curve has positive genus. The other is the introduction of universal embeddings associated to these models. We aim to use these new tools to progress in the study of scaling limits
    corecore