135,996 research outputs found

    Degree based Topological indices of Hanoi Graph

    Get PDF
    International audienceThere are various topological indices for example distance based topological indices and degree based topological indices etc. In QSAR/QSPR study, physiochemical properties and topological indices for example atom bond connectivity index, fourth atom bond connectivity index, Randic connectivity index, sum connectivity index, and so forth are used to characterize the chemical compound. In this paper we computed the edge version of atom bond connectivity index, fourth atom bond connectivity index, Randic connectivity index, sum connectivity index, geometric-arithmetic index and fifth geometric-arithmetic index of Double-wheel graph and Hanoi graph. The results are analyzed and the general formulas are derived for the above mentioned families of graphs

    Emergence of scale-free behavior in networks from limited-horizon linking and cost trade-offs

    Full text link
    We study network growth from a fixed set of initially isolated nodes placed at random on the surface of a sphere. The growth mechanism we use adds edges to the network depending on strictly local gain and cost criteria. Only nodes that are not too far apart on the sphere may be considered for being joined by an edge. Given two such nodes, the joining occurs only if the gain of doing it surpasses the cost. Our model is based on a multiplicative parameter lambda that regulates, in a function of node degrees, the maximum geodesic distance that is allowed between nodes for them to be considered for joining. For n nodes distributed uniformly on the sphere, and for lambda*sqrt(n) within limits that depend on cost-related parameters, we have found that our growth mechanism gives rise to power-law distributions of node degree that are invariant for constant lambda*sqrt(n). We also study connectivity- and distance-related properties of the networks

    Computing edge version of eccentric connectivity index of nanostar dendrimers

    Get PDF
    Let G be a molecular graph, the edge version of eccentric connectivity index of G are defined as ( ) ( ) å ∈ ( ) = ⋅ GEf c e ξ (G) deg f ecc f , where deg( f ) denotes the degree of an edge f and ecc( f ) is the largest distance between f and any other edge g of G , namely, eccentricity of f . In this paper exact formulas for the edge version of eccentric connectivity index of two classes of nanostar dendrimers were computed

    A Network Model characterized by a Latent Attribute Structure with Competition

    Full text link
    The quest for a model that is able to explain, describe, analyze and simulate real-world complex networks is of uttermost practical as well as theoretical interest. In this paper we introduce and study a network model that is based on a latent attribute structure: each node is characterized by a number of features and the probability of the existence of an edge between two nodes depends on the features they share. Features are chosen according to a process of Indian-Buffet type but with an additional random "fitness" parameter attached to each node, that determines its ability to transmit its own features to other nodes. As a consequence, a node's connectivity does not depend on its age alone, so also "young" nodes are able to compete and succeed in acquiring links. One of the advantages of our model for the latent bipartite "node-attribute" network is that it depends on few parameters with a straightforward interpretation. We provide some theoretical, as well experimental, results regarding the power-law behaviour of the model and the estimation of the parameters. By experimental data, we also show how the proposed model for the attribute structure naturally captures most local and global properties (e.g., degree distributions, connectivity and distance distributions) real networks exhibit. keyword: Complex network, social network, attribute matrix, Indian Buffet processComment: 34 pages, second version (date of the first version: July, 2014). Submitte

    Communicability Angles Reveal Critical Edges for Network Consensus Dynamics

    Get PDF
    We consider the question of determining how the topological structure influences a consensus dynamical process taking place on a network. By considering a large dataset of real-world networks we first determine that the removal of edges according to their communicability angle -an angle between position vectors of the nodes in an Euclidean communicability space- increases the average time of consensus by a factor of 5.68 in real-world networks. The edge betweenness centrality also identifies -in a smaller proportion- those critical edges for the consensus dynamics, i.e., its removal increases the time of consensus by a factor of 3.70. We justify theoretically these findings on the basis of the role played by the algebraic connectivity and the isoperimetric number of networks on the dynamical process studied, and their connections with the properties mentioned before. Finally, we study the role played by global topological parameters of networks on the consensus dynamics. We determine that the network density and the average distance-sum -an analogous of the node degree for shortest-path distances, account for more than 80% of the variance of the average time of consensus in the real-world networks studied.Comment: 15 pages, 2 figure

    Precise Partitions Of Large Graphs

    Get PDF
    First by using an easy application of the Regularity Lemma, we extend some known results about cycles of many lengths to include a specified edge on the cycles. The results in this chapter will help us in rest of this thesis. In 2000, Enomoto and Ota posed a conjecture on the existence of path decomposition of graphs with fixed start vertices and fixed lengths. We prove this conjecture when |G| is large. Our proof uses the Regularity Lemma along with several extremal lemmas, concluding with an absorbing argument to retrieve misbehaving vertices. Furthermore, sharp minimum degree and degree sum conditions are proven for the existance of a Hamiltonian cycle passing through specified vertices with prescribed distances between them in large graphs. Finally, we prove a sharp connectivity and degree sum condition for the existence of a subdivision of a multigraph in which some of the vertices are specified and the distance between each pair of vertices in the subdivision is prescribed (within one)
    corecore