7,795 research outputs found

    Degree and algebraic properties of lattice and matrix ideals

    Get PDF
    We study the degree of non-homogeneous lattice ideals over arbitrary fields, and give formulae to compute the degree in terms of the torsion of certain factor groups of Z^s and in terms of relative volumes of lattice polytopes. We also study primary decompositions of lattice ideals over an arbitrary field using the Eisenbud-Sturmfels theory of binomial ideals over algebraically closed fields. We then use these results to study certain families of integer matrices (PCB, GPCB, CB, GCB matrices) and the algebra of their corresponding matrix ideals. In particular, the family of generalized positive critical binomial matrices (GPCB matrices) is shown to be closed under transposition, and previous results for PCB ideals are extended to GPCB ideals. Then, more particularly, we give some applications to the theory of 1-dimensional binomial ideals. If G is a connected graph, we show as a further application that the order of its sandpile group is the degree of the Laplacian ideal and the degree of the toppling ideal. We also use our earlier results to give a structure theorem for graded lattice ideals of dimension 1 in 3 variables and for homogeneous lattices in Z^3 in terms of critical binomial ideals (CB ideals) and critical binomial matrices, respectively, thus complementing a well-known theorem of Herzog on the toric ideal of a monomial space curve.Comment: SIAM J. Discrete Math., to appea

    Regularity and algebraic properties of certain lattice ideals

    Full text link
    We study the regularity and the algebraic properties of certain lattice ideals. We establish a map I --> I\~ between the family of graded lattice ideals in an N-graded polynomial ring over a field K and the family of graded lattice ideals in a polynomial ring with the standard grading. This map is shown to preserve the complete intersection property and the regularity of I but not the degree. We relate the Hilbert series and the generators of I and I\~. If dim(I)=1, we relate the degrees of I and I\~. It is shown that the regularity of certain lattice ideals is additive in a certain sense. Then, we give some applications. For finite fields, we give a formula for the regularity of the vanishing ideal of a degenerate torus in terms of the Frobenius number of a semigroup. We construct vanishing ideals, over finite fields, with prescribed regularity and degree of a certain type. Let X be a subset of a projective space over a field K. It is shown that the vanishing ideal of X is a lattice ideal of dimension 1 if and only if X is a finite subgroup of a projective torus. For finite fields, it is shown that X is a subgroup of a projective torus if and only if X is parameterized by monomials. We express the regularity of the vanishing ideal over a bipartie graph in terms of the regularities of the vanishing ideals of the blocks of the graph.Comment: Bull. Braz. Math. Soc. (N.S.), to appea
    • …
    corecore