25 research outputs found

    Computability Theory

    Get PDF
    Computability is one of the fundamental notions of mathematics, trying to capture the effective content of mathematics. Starting from Gödel’s Incompleteness Theorem, it has now blossomed into a rich area with strong connections with other areas of mathematical logic as well as algebra and theoretical computer science

    Random strings and tt-degrees of Turing complete C.E. sets

    Full text link
    We investigate the truth-table degrees of (co-)c.e.\ sets, in particular, sets of random strings. It is known that the set of random strings with respect to any universal prefix-free machine is Turing complete, but that truth-table completeness depends on the choice of universal machine. We show that for such sets of random strings, any finite set of their truth-table degrees do not meet to the degree~0, even within the c.e. truth-table degrees, but when taking the meet over all such truth-table degrees, the infinite meet is indeed~0. The latter result proves a conjecture of Allender, Friedman and Gasarch. We also show that there are two Turing complete c.e. sets whose truth-table degrees form a minimal pair.Comment: 25 page

    The search for natural definability in the Turing degrees

    Get PDF

    Reverse mathematics and equivalents of the axiom of choice

    Full text link
    We study the reverse mathematics of countable analogues of several maximality principles that are equivalent to the axiom of choice in set theory. Among these are the principle asserting that every family of sets has a ⊆\subseteq-maximal subfamily with the finite intersection property and the principle asserting that if PP is a property of finite character then every set has a ⊆\subseteq-maximal subset of which PP holds. We show that these principles and their variations have a wide range of strengths in the context of second-order arithmetic, from being equivalent to Z2\mathsf{Z}_2 to being weaker than ACA0\mathsf{ACA}_0 and incomparable with WKL0\mathsf{WKL}_0. In particular, we identify a choice principle that, modulo Σ20\Sigma^0_2 induction, lies strictly below the atomic model theorem principle AMT\mathsf{AMT} and implies the omitting partial types principle OPT\mathsf{OPT}
    corecore