40,918 research outputs found

    Kinetic growth walks on complex networks

    Full text link
    Kinetically grown self-avoiding walks on various types of generalized random networks have been studied. Networks with short- and long-tailed degree distributions P(k)P(k) were considered (kk, degree or connectivity), including scale-free networks with P(k)∼k−γP(k) \sim k^{-\gamma}. The long-range behaviour of self-avoiding walks on random networks is found to be determined by finite-size effects. The mean self-intersection length of non-reversal random walks, , scales as a power of the system size $N$: $ \sim N^{\beta}$, with an exponent $\beta = 0.5$ for short-tailed degree distributions and $\beta < 0.5$ for scale-free networks with $\gamma < 3$. The mean attrition length of kinetic growth walks, , scales as ∼Nα \sim N^{\alpha}, with an exponent α\alpha which depends on the lowest degree in the network. Results of approximate probabilistic calculations are supported by those derived from simulations of various kinds of networks. The efficiency of kinetic growth walks to explore networks is largely reduced by inhomogeneity in the degree distribution, as happens for scale-free networks.Comment: 10 pages, 8 figure

    Epidemics on random intersection graphs

    Get PDF
    In this paper we consider a model for the spread of a stochastic SIR (Susceptible →\to Infectious →\to Recovered) epidemic on a network of individuals described by a random intersection graph. Individuals belong to a random number of cliques, each of random size, and infection can be transmitted between two individuals if and only if there is a clique they both belong to. Both the clique sizes and the number of cliques an individual belongs to follow mixed Poisson distributions. An infinite-type branching process approximation (with type being given by the length of an individual's infectious period) for the early stages of an epidemic is developed and made fully rigorous by proving an associated limit theorem as the population size tends to infinity. This leads to a threshold parameter R∗R_*, so that in a large population an epidemic with few initial infectives can give rise to a large outbreak if and only if R∗>1R_*>1. A functional equation for the survival probability of the approximating infinite-type branching process is determined; if R∗≤1R_*\le1, this equation has no nonzero solution, while if R∗>1R_*>1, it is shown to have precisely one nonzero solution. A law of large numbers for the size of such a large outbreak is proved by exploiting a single-type branching process that approximates the size of the susceptibility set of a typical individual.Comment: Published in at http://dx.doi.org/10.1214/13-AAP942 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Rotated multifractal network generator

    Get PDF
    The recently introduced multifractal network generator (MFNG), has been shown to provide a simple and flexible tool for creating random graphs with very diverse features. The MFNG is based on multifractal measures embedded in 2d, leading also to isolated nodes, whose number is relatively low for realistic cases, but may become dominant in the limiting case of infinitely large network sizes. Here we discuss the relation between this effect and the information dimension for the 1d projection of the link probability measure (LPM), and argue that the node isolation can be avoided by a simple transformation of the LPM based on rotation.Comment: Accepted for publication in JSTA

    Algebraic Aspects of Conditional Independence and Graphical Models

    Full text link
    This chapter of the forthcoming Handbook of Graphical Models contains an overview of basic theorems and techniques from algebraic geometry and how they can be applied to the study of conditional independence and graphical models. It also introduces binomial ideals and some ideas from real algebraic geometry. When random variables are discrete or Gaussian, tools from computational algebraic geometry can be used to understand implications between conditional independence statements. This is accomplished by computing primary decompositions of conditional independence ideals. As examples the chapter presents in detail the graphical model of a four cycle and the intersection axiom, a certain implication of conditional independence statements. Another important problem in the area is to determine all constraints on a graphical model, for example, equations determined by trek separation. The full set of equality constraints can be determined by computing the model's vanishing ideal. The chapter illustrates these techniques and ideas with examples from the literature and provides references for further reading.Comment: 20 pages, 1 figur

    Core percolation on complex networks

    Get PDF
    As a fundamental structural transition in complex networks, core percolation is related to a wide range of important problems. Yet, previous theoretical studies of core percolation have been focusing on the classical Erd\H{o}s-R\'enyi random networks with Poisson degree distribution, which are quite unlike many real-world networks with scale-free or fat-tailed degree distributions. Here we show that core percolation can be analytically studied for complex networks with arbitrary degree distributions. We derive the condition for core percolation and find that purely scale-free networks have no core for any degree exponents. We show that for undirected networks if core percolation occurs then it is always continuous while for directed networks it becomes discontinuous when the in- and out-degree distributions are different. We also apply our theory to real-world directed networks and find, surprisingly, that they often have much larger core sizes as compared to random models. These findings would help us better understand the interesting interplay between the structural and dynamical properties of complex networks.Comment: 17 pages, 6 figure

    Simple random walk on distance-regular graphs

    Full text link
    A survey is presented of known results concerning simple random walk on the class of distance-regular graphs. One of the highlights is that electric resistance and hitting times between points can be explicitly calculated and given strong bounds for, which leads in turn to bounds on cover times, mixing times, etc. Also discussed are harmonic functions, moments of hitting and cover times, the Green's function, and the cutoff phenomenon. The main goal of the paper is to present these graphs as a natural setting in which to study simple random walk, and to stimulate further research in the field
    • …
    corecore