33,595 research outputs found

    Error Graphs and the Reconstruction of Elements in Groups

    Get PDF
    Packing and covering problems for metric spaces, and graphs in particular, are of essential interest in combinatorics and coding theory. They are formulated in terms of metric balls of vertices. We consider a new problem in graph theory which is also based on the consideration of metric balls of vertices, but which is distinct from the traditional packing and covering problems. This problem is motivated by applications in information transmission when redundancy of messages is not sufficient for their exact reconstruction, and applications in computational biology when one wishes to restore an evolutionary process. It can be defined as the reconstruction, or identification, of an unknown vertex in a given graph from a minimal number of vertices (erroneous or distorted patterns) in a metric ball of a given radius r around the unknown vertex. For this problem it is required to find minimum restrictions for such a reconstruction to be possible and also to find efficient reconstruction algorithms under such minimal restrictions. In this paper we define error graphs and investigate their basic properties. A particular class of error graphs occurs when the vertices of the graph are the elements of a group, and when the path metric is determined by a suitable set of group elements. These are the undirected Cayley graphs. Of particular interest is the transposition Cayley graph on the symmetric group which occurs in connection with the analysis of transpositional mutations in molecular biology. We obtain a complete solution of the above problems for the transposition Cayley graph on the symmetric group.Comment: Journal of Combinatorial Theory A 200

    Computational complexity of reconstruction and isomorphism testing for designs and line graphs

    Get PDF
    Graphs with high symmetry or regularity are the main source for experimentally hard instances of the notoriously difficult graph isomorphism problem. In this paper, we study the computational complexity of isomorphism testing for line graphs of tt-(v,k,λ)(v,k,\lambda) designs. For this class of highly regular graphs, we obtain a worst-case running time of O(vlogv+O(1))O(v^{\log v + O(1)}) for bounded parameters t,k,λt,k,\lambda. In a first step, our approach makes use of the Babai--Luks algorithm to compute canonical forms of tt-designs. In a second step, we show that tt-designs can be reconstructed from their line graphs in polynomial-time. The first is algebraic in nature, the second purely combinatorial. For both, profound structural knowledge in design theory is required. Our results extend earlier complexity results about isomorphism testing of graphs generated from Steiner triple systems and block designs.Comment: 12 pages; to appear in: "Journal of Combinatorial Theory, Series A

    Reconstruction on trees and spin glass transition

    Full text link
    Consider an information source generating a symbol at the root of a tree network whose links correspond to noisy communication channels, and broadcasting it through the network. We study the problem of reconstructing the transmitted symbol from the information received at the leaves. In the large system limit, reconstruction is possible when the channel noise is smaller than a threshold. We show that this threshold coincides with the dynamical (replica symmetry breaking) glass transition for an associated statistical physics problem. Motivated by this correspondence, we derive a variational principle which implies new rigorous bounds on the reconstruction threshold. Finally, we apply a standard numerical procedure used in statistical physics, to predict the reconstruction thresholds in various channels. In particular, we prove a bound on the reconstruction problem for the antiferromagnetic ``Potts'' channels, which implies, in the noiseless limit, new results on random proper colorings of infinite regular trees. This relation to the reconstruction problem also offers interesting perspective for putting on a clean mathematical basis the theory of glasses on random graphs.Comment: 34 pages, 16 eps figure

    Performance bounds for expander-based compressed sensing in Poisson noise

    Full text link
    This paper provides performance bounds for compressed sensing in the presence of Poisson noise using expander graphs. The Poisson noise model is appropriate for a variety of applications, including low-light imaging and digital streaming, where the signal-independent and/or bounded noise models used in the compressed sensing literature are no longer applicable. In this paper, we develop a novel sensing paradigm based on expander graphs and propose a MAP algorithm for recovering sparse or compressible signals from Poisson observations. The geometry of the expander graphs and the positivity of the corresponding sensing matrices play a crucial role in establishing the bounds on the signal reconstruction error of the proposed algorithm. We support our results with experimental demonstrations of reconstructing average packet arrival rates and instantaneous packet counts at a router in a communication network, where the arrivals of packets in each flow follow a Poisson process.Comment: revised version; accepted to IEEE Transactions on Signal Processin

    A Multiscale Pyramid Transform for Graph Signals

    Get PDF
    Multiscale transforms designed to process analog and discrete-time signals and images cannot be directly applied to analyze high-dimensional data residing on the vertices of a weighted graph, as they do not capture the intrinsic geometric structure of the underlying graph data domain. In this paper, we adapt the Laplacian pyramid transform for signals on Euclidean domains so that it can be used to analyze high-dimensional data residing on the vertices of a weighted graph. Our approach is to study existing methods and develop new methods for the four fundamental operations of graph downsampling, graph reduction, and filtering and interpolation of signals on graphs. Equipped with appropriate notions of these operations, we leverage the basic multiscale constructs and intuitions from classical signal processing to generate a transform that yields both a multiresolution of graphs and an associated multiresolution of a graph signal on the underlying sequence of graphs.Comment: 16 pages, 13 figure
    corecore