57 research outputs found

    DeepOtsu: Document Enhancement and Binarization using Iterative Deep Learning

    Get PDF
    This paper presents a novel iterative deep learning framework and apply it for document enhancement and binarization. Unlike the traditional methods which predict the binary label of each pixel on the input image, we train the neural network to learn the degradations in document images and produce the uniform images of the degraded input images, which allows the network to refine the output iteratively. Two different iterative methods have been studied in this paper: recurrent refinement (RR) which uses the same trained neural network in each iteration for document enhancement and stacked refinement (SR) which uses a stack of different neural networks for iterative output refinement. Given the learned uniform and enhanced image, the binarization map can be easy to obtain by a global or local threshold. The experimental results on several public benchmark data sets show that our proposed methods provide a new clean version of the degraded image which is suitable for visualization and promising results of binarization using the global Otsu's threshold based on the enhanced images learned iteratively by the neural network.Comment: Accepted by Pattern Recognitio

    CT-Net:Cascade T-shape deep fusion networks for document binarization

    Get PDF
    Document binarization is a key step in most document analysis tasks. However, historical-document images usually suffer from various degradations, making this a very challenging processing stage. The performance of document image binarization has improved dramatically in recent years by the use of Convolutional Neural Networks (CNNs). In this paper, a dual-task, T-shaped neural network is proposed that has the main task of binarization and an auxiliary task of image enhancement. The neural network for enhancement learns the degradations in document images and the specific CNN-kernel features can be adapted towards the binarization task in the training process. In addition, the enhancement image can be considered as an improved version of the input image, which can be fed into the network for fine-tuning, making it possible to design a chained-cascade network (CT-Net). Experimental results on document binarization competition datasets (DIBCO datasets) and MCS dataset show that our proposed method outperforms competing state-of-the-art methods in most cases

    CharFormer: A Glyph Fusion based Attentive Framework for High-precision Character Image Denoising

    Full text link
    Degraded images commonly exist in the general sources of character images, leading to unsatisfactory character recognition results. Existing methods have dedicated efforts to restoring degraded character images. However, the denoising results obtained by these methods do not appear to improve character recognition performance. This is mainly because current methods only focus on pixel-level information and ignore critical features of a character, such as its glyph, resulting in character-glyph damage during the denoising process. In this paper, we introduce a novel generic framework based on glyph fusion and attention mechanisms, i.e., CharFormer, for precisely recovering character images without changing their inherent glyphs. Unlike existing frameworks, CharFormer introduces a parallel target task for capturing additional information and injecting it into the image denoising backbone, which will maintain the consistency of character glyphs during character image denoising. Moreover, we utilize attention-based networks for global-local feature interaction, which will help to deal with blind denoising and enhance denoising performance. We compare CharFormer with state-of-the-art methods on multiple datasets. The experimental results show the superiority of CharFormer quantitatively and qualitatively.Comment: Accepted by ACM MM 202

    Uniqueness of Bilevel Image Degradations

    Get PDF
    Two major degradations, edge displacement and corner erosion, change the appearance of bilevel images. The displacement of an edge determines stroke width, and the erosion ofa corner affects crispness. These degradations are functions of the system parameters: the point spread function (PSF) width and functional form, and the binarization threshold. Changing each of these parameters will affect an image differently. A given amount of edge displacement or amount of erosion of black or white corners can be caused by several combinations of the PSF width and the binarization threshold. Any pair of these degradations are unique to a single PSF width and binarization threshold for a given PSF function. Knowledge of all three degradation amounts provides information that will enable us to determine the PSF functional form from the bilevel image. The effect of each degradation on characters will be shown. Also, the uniqueness of the degradation triple {dw\u3e db, δc} and the effect of selecting an incorrect PSF functional form will be shown, first with relation to PSF width and binarization threshold estimate, then for how this is visible in sample characters
    • …
    corecore