8,103 research outputs found

    O-Band Differential Phase-Shift Quantum Key Distribution in 52-Channel C/L-Band Loaded Passive Optical Network

    Full text link
    A cost-effective QKD transmitter is evaluated in a 16km reach, 2:16-split PON and yields 5.10-7secure bits/pulse. Co-existence with 20 down-and 1 upstream channel is possible at low QBER degradation of 0.93% and 1.1%

    xLED: Covert Data Exfiltration from Air-Gapped Networks via Router LEDs

    Full text link
    In this paper we show how attackers can covertly leak data (e.g., encryption keys, passwords and files) from highly secure or air-gapped networks via the row of status LEDs that exists in networking equipment such as LAN switches and routers. Although it is known that some network equipment emanates optical signals correlated with the information being processed by the device ('side-channel'), intentionally controlling the status LEDs to carry any type of data ('covert-channel') has never studied before. A malicious code is executed on the LAN switch or router, allowing full control of the status LEDs. Sensitive data can be encoded and modulated over the blinking of the LEDs. The generated signals can then be recorded by various types of remote cameras and optical sensors. We provide the technical background on the internal architecture of switches and routers (at both the hardware and software level) which enables this type of attack. We also present amplitude and frequency based modulation and encoding schemas, along with a simple transmission protocol. We implement a prototype of an exfiltration malware and discuss its design and implementation. We evaluate this method with a few routers and different types of LEDs. In addition, we tested various receivers including remote cameras, security cameras, smartphone cameras, and optical sensors, and also discuss different detection and prevention countermeasures. Our experiment shows that sensitive data can be covertly leaked via the status LEDs of switches and routers at a bit rates of 10 bit/sec to more than 1Kbit/sec per LED

    Floodlight Quantum Key Distribution: A Practical Route to Gbps Secret-Key Rates

    Full text link
    The channel loss incurred in long-distance transmission places a significant burden on quantum key distribution (QKD) systems: they must defeat a passive eavesdropper who detects all the light lost in the quantum channel and does so without disturbing the light that reaches the intended destination. The current QKD implementation with the highest long-distance secret-key rate meets this challenge by transmitting no more than one photon per bit [Opt. Express 21, 24550-24565 (2013)]. As a result, it cannot achieve the Gbps secret-key rate needed for one-time pad encryption of large data files unless an impractically large amount of multiplexing is employed. We introduce floodlight QKD (FL-QKD), which floods the quantum channel with a high number of photons per bit distributed over a much greater number of optical modes. FL-QKD offers security against the optimum frequency-domain collective attack by transmitting less than one photon per mode and using photon-coincidence channel monitoring, and it is completely immune to passive eavesdropping. More importantly, FL-QKD is capable of a 2 Gbps secret-key rate over a 50 km fiber link, without any multiplexing, using available equipment, i.e., no new technology need be developed. FL-QKD achieves this extraordinary secret-key rate by virtue of its unprecedented secret-key efficiency, in bits per channel use, which exceeds those of state-of-the-art systems by two orders of magnitude.Comment: 18 pages, 5 figure

    Physical-Layer Attacks in Transparent Optical Networks

    Get PDF

    Securing passive optical network against signal injection attack

    Get PDF
    Passive Optical Network (PON) is a promising solution to the last-mile problem in access networks. Security is a very crucial aspect to be considered especially in the current environments that are characterized by much larger data transport capacity. Moreover, securing the physical layer requires urgent attention as it will become more critical in future PON that has much longer distance with the involvement of more users. Thus, it is vulnerable to a variety of attacks, including denial of service (DoS) which jams a network, eavesdropping and masquerade. DoS attack can take place when a continuous upstream signal is transmitted from Optical Network Unit (ONU) to Optical Line Terminal (OLT) with high enough power, causing the OLT to receive the data with high bit error rate. This research proposes a method to secure PON from high power injection attack. The solution is based on the idea of deploying an optical attenuator in the upstream communication towards the splitter to prevent any high signal power injection attack and restrict it up to an acceptable power level. One of the most important benefits of the proposed work is its straightforward implementation in the existing GPON network with minimum cost and effort. The GPON network under studied that focuses on the upstream communication based on standard ITU-T G.984 ( data rate of 1.25 Gbps) examined the effects of varied optical fiber distances and number of ONUs. The performance of the proposed method is evaluated using Optisystem to determine the feasibility of the concept. Findings from the simulation results revealed that the optical attenuator compensated the jamming degradation attack up to eight ONUs and maximum distance of 20 km. The proposed system design also found that the method has limitation to reduce the attack at higher ONU numbers e.g. 16 and 32 due to high insertion loss. The overall performance confirms that this method is useful to protect the GPON system and minimize the high power for low insertion loss power splitter

    Relay Selection for Wireless Communications Against Eavesdropping: A Security-Reliability Tradeoff Perspective

    Full text link
    This article examines the secrecy coding aided wireless communications from a source to a destination in the presence of an eavesdropper from a security-reliability tradeoff (SRT) perspective. Explicitly, the security is quantified in terms of the intercept probability experienced at the eavesdropper, while the outage probability encountered at the destination is used to measure the transmission reliability. We characterize the SRT of conventional direct transmission from the source to the destination and show that if the outage probability is increased, the intercept probability decreases, and vice versa. We first demonstrate that the employment of relay nodes for assisting the source-destination transmissions is capable of defending against eavesdropping, followed by quantifying the benefits of single-relay selection (SRS) as well as of multi-relay selection (MRS) schemes. More specifically, in the SRS scheme, only the single "best" relay is selected for forwarding the source signal to the destination, whereas the MRS scheme allows multiple relays to participate in this process. It is illustrated that both the SRS and MRS schemes achieve a better SRT than the conventional direct transmission, especially upon increasing the number of relays. Numerical results also show that as expected, the MRS outperforms the SRS in terms of its SRT. Additionally, we present some open challenges and future directions for the wireless relay aided physical-layer security.Comment: 16 pages, IEEE Network, 201

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)
    • 

    corecore