5,081 research outputs found

    Diagnostics and prognostics utilising dynamic Bayesian networks applied to a wind turbine gearbox

    Get PDF
    The UK has the largest installed capacity of offshore wind and this is set to increase significantly in future years. The difficulty in conducting maintenance offshore leads to increased operation and maintenance costs compared to onshore but with better condition monitoring and preventative maintenance strategies these costs could be reduced. In this paper an on-line condition monitoring system is created that is capable of diagnosing machine component conditions based on an array of sensor readings. It then informs the operator of actions required. This simplifies the role of the operator and the actions required can be optimised within the program to minimise costs. The program has been applied to a gearbox oil testbed to demonstrate its operational suitability. In addition a method for determining the most cost effective maintenance strategy is examined. This method uses a Dynamic Bayesian Network to simulate the degradation of wind turbine components, effectively acting as a prognostics tool, and calculates the cost of various preventative maintenance strategies compared to purely corrective maintenance actions. These methods are shown to reduce the cost of operating wind turbines in the offshore environment

    Expert Elicitation for Reliable System Design

    Full text link
    This paper reviews the role of expert judgement to support reliability assessments within the systems engineering design process. Generic design processes are described to give the context and a discussion is given about the nature of the reliability assessments required in the different systems engineering phases. It is argued that, as far as meeting reliability requirements is concerned, the whole design process is more akin to a statistical control process than to a straightforward statistical problem of assessing an unknown distribution. This leads to features of the expert judgement problem in the design context which are substantially different from those seen, for example, in risk assessment. In particular, the role of experts in problem structuring and in developing failure mitigation options is much more prominent, and there is a need to take into account the reliability potential for future mitigation measures downstream in the system life cycle. An overview is given of the stakeholders typically involved in large scale systems engineering design projects, and this is used to argue the need for methods that expose potential judgemental biases in order to generate analyses that can be said to provide rational consensus about uncertainties. Finally, a number of key points are developed with the aim of moving toward a framework that provides a holistic method for tracking reliability assessment through the design process.Comment: This paper commented in: [arXiv:0708.0285], [arXiv:0708.0287], [arXiv:0708.0288]. Rejoinder in [arXiv:0708.0293]. Published at http://dx.doi.org/10.1214/088342306000000510 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Hidden Markov Models and their Application for Predicting Failure Events

    Full text link
    We show how Markov mixed membership models (MMMM) can be used to predict the degradation of assets. We model the degradation path of individual assets, to predict overall failure rates. Instead of a separate distribution for each hidden state, we use hierarchical mixtures of distributions in the exponential family. In our approach the observation distribution of the states is a finite mixture distribution of a small set of (simpler) distributions shared across all states. Using tied-mixture observation distributions offers several advantages. The mixtures act as a regularization for typically very sparse problems, and they reduce the computational effort for the learning algorithm since there are fewer distributions to be found. Using shared mixtures enables sharing of statistical strength between the Markov states and thus transfer learning. We determine for individual assets the trade-off between the risk of failure and extended operating hours by combining a MMMM with a partially observable Markov decision process (POMDP) to dynamically optimize the policy for when and how to maintain the asset.Comment: Will be published in the proceedings of ICCS 2020; @Booklet{EasyChair:3183, author = {Paul Hofmann and Zaid Tashman}, title = {Hidden Markov Models and their Application for Predicting Failure Events}, howpublished = {EasyChair Preprint no. 3183}, year = {EasyChair, 2020}

    Decision support systems for large dam planning and operation in Africa

    Get PDF
    Decision support systems/ Dams/ Planning/ Operations/ Social impact/ Environmental effects

    Modelling interactions between multiple bridge deterioration mechanisms

    Get PDF
    Bridge asset managers are tasked with developing effective maintenance strategies by the stakeholders of transportation networks. Any presentation of maintenance strategies requires an estimate of the consequence on the Whole Life Cycle Cost (WLCC), which is contingent on an accurate deterioration model. Bridge deterioration has previously been demonstrated to exhibit non-constant behaviour in literature. However, commonly industrial data constrains deterioration models to use exponential distributions. In this study, a Dynamic Bayesian Network (DBN) is proposed to model bridge deterioration, which considers the initiation of different defect mechanisms and the interactions between the mechanisms. The model is parameterised using an exponential distribution, however through the consideration of defect interactions, non-constant deterioration behaviour can still be incorporated in the model. The deterioration of pointing, displacement of block work alongside the presence of spalling, hollowness and masonry cracking are the defect mechanisms considered, with masonry railway bridges in the United Kingdom serving as a case study

    Bayesian Network Approach to Assessing System Reliability for Improving System Design and Optimizing System Maintenance

    Get PDF
    abstract: A quantitative analysis of a system that has a complex reliability structure always involves considerable challenges. This dissertation mainly addresses uncertainty in- herent in complicated reliability structures that may cause unexpected and undesired results. The reliability structure uncertainty cannot be handled by the traditional relia- bility analysis tools such as Fault Tree and Reliability Block Diagram due to their deterministic Boolean logic. Therefore, I employ Bayesian network that provides a flexible modeling method for building a multivariate distribution. By representing a system reliability structure as a joint distribution, the uncertainty and correlations existing between system’s elements can effectively be modeled in a probabilistic man- ner. This dissertation focuses on analyzing system reliability for the entire system life cycle, particularly, production stage and early design stages. In production stage, the research investigates a system that is continuously mon- itored by on-board sensors. With modeling the complex reliability structure by Bayesian network integrated with various stochastic processes, I propose several methodologies that evaluate system reliability on real-time basis and optimize main- tenance schedules. In early design stages, the research aims to predict system reliability based on the current system design and to improve the design if necessary. The three main challenges in this research are: 1) the lack of field failure data, 2) the complex reliability structure and 3) how to effectively improve the design. To tackle the difficulties, I present several modeling approaches using Bayesian inference and nonparametric Bayesian network where the system is explicitly analyzed through the sensitivity analysis. In addition, this modeling approach is enhanced by incorporating a temporal dimension. However, the nonparametric Bayesian network approach generally accompanies with high computational efforts, especially, when a complex and large system is modeled. To alleviate this computational burden, I also suggest to building a surrogate model with quantile regression. In summary, this dissertation studies and explores the use of Bayesian network in analyzing complex systems. All proposed methodologies are demonstrated by case studies.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201

    Accommodating repair actions into gas turbine prognostics

    Get PDF
    Elements of gas turbine degradation, such as compressor fouling, are recoverable through maintenance actions like compressor washing. These actions increase the usable engine life and optimise the performance of the gas turbine. However, these maintenance actions are performed by a separate organization to those undertaking fleet management operations, leading to significant uncertainty in the maintenance state of the asset. The uncertainty surrounding maintenance actions impacts prognostic efficacy. In this paper, we adopt Bayesian on-line change point detection to detect the compressor washing events. Then, the event detection information is used as an input to a prognostic algorithm, advising an update to the estimation of remaining useful life. To illustrate the capability of the approach, we demonstrated our on-line Bayesian change detection algorithms on synthetic and real aircraft engine service data, in order to identify the compressor washing events for a gas turbine and thus provide demonstrably improved prognosis
    • …
    corecore