691 research outputs found

    IN- SITU STRUCTURED LIGHT TECHNIQUES STUDY TO INSPECT SURFACES DURING ADDITIVE MANUFACTURE

    Get PDF
    Three-dimensional (3D) shape measurement techniques play an increasingly important role in the quality control proceedures of industry, such as aerospace, bioengineering, information security, automobile, integrated circuits and so on. Additive manufacturing (AM) provide significant advantages over conventional subtractive manufacturing techniques in terms of the wide range of part geometry that can be obtained. The key metal AM technology is powder bed processing. During the AM process, powder delivery occurs thousands of times. Therefore, the assessment of delivery quality would be advantageous for the process to provide feedback for process control. After the energy source melts the powder bed, the detection of the machined surface is also a critically important criterion for the evaluation of the manufacturing quality. This thesis presents an in-situ quantitative inspection technique for the powder bed post raking and printed surface after melting, the technique uses fringe projection profilometry. In this thesis, system calibration methods, phase analysis algorithms, and error correction methods are investigated. A novel surface fitting algorithm is employed to reduce the influence of phase error and random noise during system calibration. A novel intelligent fringe projection technique using a support-vector-machine (SVM) algorithm is proposed to measure the 3D topography of high dynamic range surfaces on a layer by layer basis within the EBAM machine. A simple calibration method is used to eliminate phase errors during system calibration. The proposed in-situ inspection technique has been installed on a commercial electron beam melting (EBM) AM machine. Exemplar powder beds with defects and printed surfaces, are measured with the proposed technique. The whole inspection process lasts less than 5 seconds. Experimental results showed that the powder and the melting surface defects could be efficiently inspected using the proposed system and the measurement result could be fed back to the build process to improve the processing quality. For the inspection of highly reflective surface geometries that have been further machined post AM, phase measuring deflectometry (PMD) has been widely studied for the 3D form measurement. This thesis presents a new direct PMD (DPMD) method that measures the full-field 3D shape of complicated specular objects. A mathematical model is derived to directly relate an absolute phase map to depth data, instead of the gradient. The 3D shape of a monolithic multi-mirror array having multiple specular surfaces was measured. Experimental results show that the proposed DPMD method can obtain the full-field 3D shape of specular objects having isolated and/or discontinuous surfaces accurately and effectively. In this thesis, the fringe projection and the deflectometry techniques are studied. Two different measurement systems were used to measure different roughness surfaces. The experimental results shows the rough surfaces, reflective surfaces, and the highly reflective specular surfaces can be measured and reconstructed by the proposed methods

    Statistical model based 3D shape prediction of postoperative trunks for non-invasive scoliosis surgery planning

    Get PDF
    One of the major concerns of scoliosis patients undergoing surgical treatment is the aesthetic aspect of the surgery outcome. It would be useful to predict the postoperative appearance of the patient trunk in the course of a surgery planning process in order to take into account the expectations of the patient. In this paper, we propose to use least squares support vector regression for the prediction of the postoperative trunk 3D shape after spine surgery for adolescent idiopathic scoliosis. Five dimensionality reduction techniques used in conjunction with the support vector machine are compared. The methods are evaluated in terms of their accuracy, based on the leave-one-out cross-validation performed on a database of 141 cases. The results indicate that the 3D shape predictions using a dimensionality reduction obtained by simultaneous decomposition of the predictors and response variables have the best accuracy.CIHR / IRS

    Analysis of 3D human gait reconstructed with a depth camera and mirrors

    Full text link
    L'évaluation de la démarche humaine est l'une des composantes essentielles dans les soins de santé. Les systèmes à base de marqueurs avec plusieurs caméras sont largement utilisés pour faire cette analyse. Cependant, ces systèmes nécessitent généralement des équipements spécifiques à prix élevé et/ou des moyens de calcul intensif. Afin de réduire le coût de ces dispositifs, nous nous concentrons sur un système d'analyse de la marche qui utilise une seule caméra de profondeur. Le principe de notre travail est similaire aux systèmes multi-caméras, mais l'ensemble de caméras est remplacé par un seul capteur de profondeur et des miroirs. Chaque miroir dans notre configuration joue le rôle d'une caméra qui capture la scène sous un point de vue différent. Puisque nous n'utilisons qu'une seule caméra, il est ainsi possible d'éviter l'étape de synchronisation et également de réduire le coût de l'appareillage. Notre thèse peut être divisée en deux sections: reconstruction 3D et analyse de la marche. Le résultat de la première section est utilisé comme entrée de la seconde. Notre système pour la reconstruction 3D est constitué d'une caméra de profondeur et deux miroirs. Deux types de capteurs de profondeur, qui se distinguent sur la base du mécanisme d'estimation de profondeur, ont été utilisés dans nos travaux. Avec la technique de lumière structurée (SL) intégrée dans le capteur Kinect 1, nous effectuons la reconstruction 3D à partir des principes de l'optique géométrique. Pour augmenter le niveau des détails du modèle reconstruit en 3D, la Kinect 2 qui estime la profondeur par temps de vol (ToF), est ensuite utilisée pour l'acquisition d'images. Cependant, en raison de réflections multiples sur les miroirs, il se produit une distorsion de la profondeur dans notre système. Nous proposons donc une approche simple pour réduire cette distorsion avant d'appliquer les techniques d'optique géométrique pour reconstruire un nuage de points de l'objet 3D. Pour l'analyse de la démarche, nous proposons diverses alternatives centrées sur la normalité de la marche et la mesure de sa symétrie. Cela devrait être utile lors de traitements cliniques pour évaluer, par exemple, la récupération du patient après une intervention chirurgicale. Ces méthodes se composent d'approches avec ou sans modèle qui ont des inconvénients et avantages différents. Dans cette thèse, nous présentons 3 méthodes qui traitent directement les nuages de points reconstruits dans la section précédente. La première utilise la corrélation croisée des demi-corps gauche et droit pour évaluer la symétrie de la démarche, tandis que les deux autres methodes utilisent des autoencodeurs issus de l'apprentissage profond pour mesurer la normalité de la démarche.The problem of assessing human gaits has received a great attention in the literature since gait analysis is one of key components in healthcare. Marker-based and multi-camera systems are widely employed to deal with this problem. However, such systems usually require specific equipments with high price and/or high computational cost. In order to reduce the cost of devices, we focus on a system of gait analysis which employs only one depth sensor. The principle of our work is similar to multi-camera systems, but the collection of cameras is replaced by one depth sensor and mirrors. Each mirror in our setup plays the role of a camera which captures the scene at a different viewpoint. Since we use only one camera, the step of synchronization can thus be avoided and the cost of devices is also reduced. Our studies can be separated into two categories: 3D reconstruction and gait analysis. The result of the former category is used as the input of the latter one. Our system for 3D reconstruction is built with a depth camera and two mirrors. Two types of depth sensor, which are distinguished based on the scheme of depth estimation, have been employed in our works. With the structured light (SL) technique integrated into the Kinect 1, we perform the 3D reconstruction based on geometrical optics. In order to increase the level of details of the 3D reconstructed model, the Kinect 2 with time-of-flight (ToF) depth measurement is used for image acquisition instead of the previous generation. However, due to multiple reflections on the mirrors, depth distortion occurs in our setup. We thus propose a simple approach for reducing such distortion before applying geometrical optics to reconstruct a point cloud of the 3D object. For the task of gait analysis, we propose various alternative approaches focusing on the problem of gait normality/symmetry measurement. They are expected to be useful for clinical treatments such as monitoring patient's recovery after surgery. These methods consist of model-free and model-based approaches that have different cons and pros. In this dissertation, we present 3 methods that directly process point clouds reconstructed from the previous work. The first one uses cross-correlation of left and right half-bodies to assess gait symmetry while the other ones employ deep auto-encoders to measure gait normality

    A physically based trunk soft tissue modeling for scoliosis surgery planning systems

    Get PDF
    One of the major concerns of scoliotic patients undergoing spinal correction surgery is the trunk's external appearance after the surgery. This paper presents a novel incremental approach for simulating postoperative trunk shape in scoliosis surgery. Preoperative and postoperative trunk shapes data were obtained using three-dimensional medical imaging techniques for seven patients with adolescent idiopathic scoliosis. Results of qualitative and quantitative evaluations, based on the comparison of the simulated and actual postoperative trunk surfaces, showed an adequate accuracy of the method. Our approach provides a candidate simulation tool to be used in a clinical environment for the surgery planning process.IRSC / CIH

    On Improving Generalization of CNN-Based Image Classification with Delineation Maps Using the CORF Push-Pull Inhibition Operator

    Get PDF
    Deployed image classification pipelines are typically dependent on the images captured in real-world environments. This means that images might be affected by different sources of perturbations (e.g. sensor noise in low-light environments). The main challenge arises by the fact that image quality directly impacts the reliability and consistency of classification tasks. This challenge has, hence, attracted wide interest within the computer vision communities. We propose a transformation step that attempts to enhance the generalization ability of CNN models in the presence of unseen noise in the test set. Concretely, the delineation maps of given images are determined using the CORF push-pull inhibition operator. Such an operation transforms an input image into a space that is more robust to noise before being processed by a CNN. We evaluated our approach on the Fashion MNIST data set with an AlexNet model. It turned out that the proposed CORF-augmented pipeline achieved comparable results on noise-free images to those of a conventional AlexNet classification model without CORF delineation maps, but it consistently achieved significantly superior performance on test images perturbed with different levels of Gaussian and uniform noise

    Computational Approaches Based On Image Processing for Automated Disease Identification On Chili Leaf Images: A Review

    Get PDF
    Chili, an important crop whose fruit is used as a spice, is significantly hampered by the existence of chili diseases. While these diseases pose a significant concern to farmers since they impair the supply of spices to the market, they can be managed and monitored to lessen their impact. Therefore, identifying chili diseases using a pertinent approach is of enormous importance. Over the years, the growth of computational approaches based on image processing has found its application in automated disease identification, leading to the availability of a reliable monitoring tool that produces promising findings for the chili. Numerous research papers on identifying chili diseases using the approaches have been published. Still, to the best knowledge of the author, there has not been a proper attempt to analyze these papers to describe the many steps of diagnosis, including pre-processing, segmentation, extraction of features, as well as identification techniques. Thus, a total of 50 research paper publications on the identification of chili diseases, with publication dates spanning from 2013 to 2021, are reviewed in this paper. Through the findings in this paper, it becomes feasible to comprehend the development trend for the application of computational approaches based on image processing in the identification of chili diseases, as well as the challenges and future directions that require attention from the present research community.&nbsp

    QUIS-CAMPI: Biometric Recognition in Surveillance Scenarios

    Get PDF
    The concerns about individuals security have justified the increasing number of surveillance cameras deployed both in private and public spaces. However, contrary to popular belief, these devices are in most cases used solely for recording, instead of feeding intelligent analysis processes capable of extracting information about the observed individuals. Thus, even though video surveillance has already proved to be essential for solving multiple crimes, obtaining relevant details about the subjects that took part in a crime depends on the manual inspection of recordings. As such, the current goal of the research community is the development of automated surveillance systems capable of monitoring and identifying subjects in surveillance scenarios. Accordingly, the main goal of this thesis is to improve the performance of biometric recognition algorithms in data acquired from surveillance scenarios. In particular, we aim at designing a visual surveillance system capable of acquiring biometric data at a distance (e.g., face, iris or gait) without requiring human intervention in the process, as well as devising biometric recognition methods robust to the degradation factors resulting from the unconstrained acquisition process. Regarding the first goal, the analysis of the data acquired by typical surveillance systems shows that large acquisition distances significantly decrease the resolution of biometric samples, and thus their discriminability is not sufficient for recognition purposes. In the literature, diverse works point out Pan Tilt Zoom (PTZ) cameras as the most practical way for acquiring high-resolution imagery at a distance, particularly when using a master-slave configuration. In the master-slave configuration, the video acquired by a typical surveillance camera is analyzed for obtaining regions of interest (e.g., car, person) and these regions are subsequently imaged at high-resolution by the PTZ camera. Several methods have already shown that this configuration can be used for acquiring biometric data at a distance. Nevertheless, these methods failed at providing effective solutions to the typical challenges of this strategy, restraining its use in surveillance scenarios. Accordingly, this thesis proposes two methods to support the development of a biometric data acquisition system based on the cooperation of a PTZ camera with a typical surveillance camera. The first proposal is a camera calibration method capable of accurately mapping the coordinates of the master camera to the pan/tilt angles of the PTZ camera. The second proposal is a camera scheduling method for determining - in real-time - the sequence of acquisitions that maximizes the number of different targets obtained, while minimizing the cumulative transition time. In order to achieve the first goal of this thesis, both methods were combined with state-of-the-art approaches of the human monitoring field to develop a fully automated surveillance capable of acquiring biometric data at a distance and without human cooperation, designated as QUIS-CAMPI system. The QUIS-CAMPI system is the basis for pursuing the second goal of this thesis. The analysis of the performance of the state-of-the-art biometric recognition approaches shows that these approaches attain almost ideal recognition rates in unconstrained data. However, this performance is incongruous with the recognition rates observed in surveillance scenarios. Taking into account the drawbacks of current biometric datasets, this thesis introduces a novel dataset comprising biometric samples (face images and gait videos) acquired by the QUIS-CAMPI system at a distance ranging from 5 to 40 meters and without human intervention in the acquisition process. This set allows to objectively assess the performance of state-of-the-art biometric recognition methods in data that truly encompass the covariates of surveillance scenarios. As such, this set was exploited for promoting the first international challenge on biometric recognition in the wild. This thesis describes the evaluation protocols adopted, along with the results obtained by the nine methods specially designed for this competition. In addition, the data acquired by the QUIS-CAMPI system were crucial for accomplishing the second goal of this thesis, i.e., the development of methods robust to the covariates of surveillance scenarios. The first proposal regards a method for detecting corrupted features in biometric signatures inferred by a redundancy analysis algorithm. The second proposal is a caricature-based face recognition approach capable of enhancing the recognition performance by automatically generating a caricature from a 2D photo. The experimental evaluation of these methods shows that both approaches contribute to improve the recognition performance in unconstrained data.A crescente preocupação com a segurança dos indivíduos tem justificado o crescimento do número de câmaras de vídeo-vigilância instaladas tanto em espaços privados como públicos. Contudo, ao contrário do que normalmente se pensa, estes dispositivos são, na maior parte dos casos, usados apenas para gravação, não estando ligados a nenhum tipo de software inteligente capaz de inferir em tempo real informações sobre os indivíduos observados. Assim, apesar de a vídeo-vigilância ter provado ser essencial na resolução de diversos crimes, o seu uso está ainda confinado à disponibilização de vídeos que têm que ser manualmente inspecionados para extrair informações relevantes dos sujeitos envolvidos no crime. Como tal, atualmente, o principal desafio da comunidade científica é o desenvolvimento de sistemas automatizados capazes de monitorizar e identificar indivíduos em ambientes de vídeo-vigilância. Esta tese tem como principal objetivo estender a aplicabilidade dos sistemas de reconhecimento biométrico aos ambientes de vídeo-vigilância. De forma mais especifica, pretende-se 1) conceber um sistema de vídeo-vigilância que consiga adquirir dados biométricos a longas distâncias (e.g., imagens da cara, íris, ou vídeos do tipo de passo) sem requerer a cooperação dos indivíduos no processo; e 2) desenvolver métodos de reconhecimento biométrico robustos aos fatores de degradação inerentes aos dados adquiridos por este tipo de sistemas. No que diz respeito ao primeiro objetivo, a análise aos dados adquiridos pelos sistemas típicos de vídeo-vigilância mostra que, devido à distância de captura, os traços biométricos amostrados não são suficientemente discriminativos para garantir taxas de reconhecimento aceitáveis. Na literatura, vários trabalhos advogam o uso de câmaras Pan Tilt Zoom (PTZ) para adquirir imagens de alta resolução à distância, principalmente o uso destes dispositivos no modo masterslave. Na configuração master-slave um módulo de análise inteligente seleciona zonas de interesse (e.g. carros, pessoas) a partir do vídeo adquirido por uma câmara de vídeo-vigilância e a câmara PTZ é orientada para adquirir em alta resolução as regiões de interesse. Diversos métodos já mostraram que esta configuração pode ser usada para adquirir dados biométricos à distância, ainda assim estes não foram capazes de solucionar alguns problemas relacionados com esta estratégia, impedindo assim o seu uso em ambientes de vídeo-vigilância. Deste modo, esta tese propõe dois métodos para permitir a aquisição de dados biométricos em ambientes de vídeo-vigilância usando uma câmara PTZ assistida por uma câmara típica de vídeo-vigilância. O primeiro é um método de calibração capaz de mapear de forma exata as coordenadas da câmara master para o ângulo da câmara PTZ (slave) sem o auxílio de outros dispositivos óticos. O segundo método determina a ordem pela qual um conjunto de sujeitos vai ser observado pela câmara PTZ. O método proposto consegue determinar em tempo-real a sequência de observações que maximiza o número de diferentes sujeitos observados e simultaneamente minimiza o tempo total de transição entre sujeitos. De modo a atingir o primeiro objetivo desta tese, os dois métodos propostos foram combinados com os avanços alcançados na área da monitorização de humanos para assim desenvolver o primeiro sistema de vídeo-vigilância completamente automatizado e capaz de adquirir dados biométricos a longas distâncias sem requerer a cooperação dos indivíduos no processo, designado por sistema QUIS-CAMPI. O sistema QUIS-CAMPI representa o ponto de partida para iniciar a investigação relacionada com o segundo objetivo desta tese. A análise do desempenho dos métodos de reconhecimento biométrico do estado-da-arte mostra que estes conseguem obter taxas de reconhecimento quase perfeitas em dados adquiridos sem restrições (e.g., taxas de reconhecimento maiores do que 99% no conjunto de dados LFW). Contudo, este desempenho não é corroborado pelos resultados observados em ambientes de vídeo-vigilância, o que sugere que os conjuntos de dados atuais não contêm verdadeiramente os fatores de degradação típicos dos ambientes de vídeo-vigilância. Tendo em conta as vulnerabilidades dos conjuntos de dados biométricos atuais, esta tese introduz um novo conjunto de dados biométricos (imagens da face e vídeos do tipo de passo) adquiridos pelo sistema QUIS-CAMPI a uma distância máxima de 40m e sem a cooperação dos sujeitos no processo de aquisição. Este conjunto permite avaliar de forma objetiva o desempenho dos métodos do estado-da-arte no reconhecimento de indivíduos em imagens/vídeos capturados num ambiente real de vídeo-vigilância. Como tal, este conjunto foi utilizado para promover a primeira competição de reconhecimento biométrico em ambientes não controlados. Esta tese descreve os protocolos de avaliação usados, assim como os resultados obtidos por 9 métodos especialmente desenhados para esta competição. Para além disso, os dados adquiridos pelo sistema QUIS-CAMPI foram essenciais para o desenvolvimento de dois métodos para aumentar a robustez aos fatores de degradação observados em ambientes de vídeo-vigilância. O primeiro é um método para detetar características corruptas em assinaturas biométricas através da análise da redundância entre subconjuntos de características. O segundo é um método de reconhecimento facial baseado em caricaturas automaticamente geradas a partir de uma única foto do sujeito. As experiências realizadas mostram que ambos os métodos conseguem reduzir as taxas de erro em dados adquiridos de forma não controlada

    Online Structured Learning for Real-Time Computer Vision Gaming Applications

    Get PDF
    In recent years computer vision has played an increasingly important role in the development of computer games, and it now features as one of the core technologies for many gaming platforms. The work in this thesis addresses three problems in real-time computer vision, all of which are motivated by their potential application to computer games. We rst present an approach for real-time 2D tracking of arbitrary objects. In common with recent research in this area we incorporate online learning to provide an appearance model which is able to adapt to the target object and its surrounding background during tracking. However, our approach moves beyond the standard framework of tracking using binary classication and instead integrates tracking and learning in a more principled way through the use of structured learning. As well as providing a more powerful framework for adaptive visual object tracking, our approach also outperforms state-of-the-art tracking algorithms on standard datasets. Next we consider the task of keypoint-based object tracking. We take the traditional pipeline of matching keypoints followed by geometric verication and show how this can be embedded into a structured learning framework in order to provide principled adaptivity to a given environment. We also propose an approximation method allowing us to take advantage of recently developed binary image descriptors, meaning our approach is suitable for real-time application even on low-powered portable devices. Experimentally, we clearly see the benet that online adaptation using structured learning can bring to this problem. Finally, we present an approach for approximately recovering the dense 3D structure of a scene which has been mapped by a simultaneous localisation and mapping system. Our approach is guided by the constraints of the low-powered portable hardware we are targeting, and we develop a system which coarsely models the scene using a small number of planes. To achieve this, we frame the task as a structured prediction problem and introduce online learning into our approach to provide adaptivity to a given scene. This allows us to use relatively simple multi-view information coupled with online learning of appearance to efficiently produce coarse reconstructions of a scene
    • …
    corecore