642 research outputs found

    Simulation of Congenital Heart Defect Corrective Surgeries Using Thin Shell Elements

    Get PDF
    International audienceCongenital heart defect (CHD) corrective interventions in infants are extremely challenging due to commonly complex and heterogeneous disease pat-terns. At present, cardiac surgeons can only rely on non-invasive imaging prior to surgery. Critical decisions regarding the surgical procedure of choice and its exe-cution must be made during the actual surgery and are strongly dependent on ex-perience. We want to improve surgery planning by providing a simulation system that is able to accurately predict patient-specific results for different surgical pro-cedures preoperatively. Therefore we use a sophisticated simulation model based on thin shell elements. We present a novel joining approach that allows for im-plementing all necessary surgical low-level procedures, e.g. incising and suturing, independent from the simulation model. No modifications are necessary for al-ready approved thin shell implementations and our simulation system can instan-taneously benefit from further improved simulation models in the future. By re-ducing computationally expensive simulations to a minimum during a virtual surgery we can achieve a fluent workflow for surgeons. However, a specialized mesh resampling algorithm is required to fully utilize our simulation system

    Predictive surgical simulation for preoperative planning of complex cardioviscular surgeries

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Cell-based maximum entropy approximants for three-dimensional domains: Application in large strain elastodynamics using the meshless total Lagrangian explicit dynamics method

    Get PDF
    We present the cell-based maximum entropy (CME) approximants in E3 space by constructing the smooth approximation distance function to polyhedral surfaces. CME is a meshfree approximation method combining the properties of the maximum entropy approximants and the compact support of element-based interpolants. The method is evaluated in problems of large strain elastodynamics for three-dimensional (3D) continua using the well-established meshless total Lagrangian explicit dynamics method. The accuracy and efficiency of the method is assessed in several numerical examples in terms of computational time, accuracy in boundary conditions imposition, and strain energy density error. Due to the smoothness of CME basis functions, the numerical stability in explicit time integration is preserved for large time step. The challenging task of essential boundary condition (EBC) imposition in noninterpolating meshless methods (eg, moving least squares) is eliminated in CME due to the weak Kronecker-delta property. The EBCs are imposed directly, similar to the finite element method. CME is proven a valuable alternative to other meshless and element-based methods for large-scale elastodynamics in 3D. A naive implementation of the CME approximants in E3 is available to download at https://www.mountris.org/software/mlab/cme.Fil: Mountris, Konstantinos A.. Universidad de Zaragoza; EspañaFil: Bourantas, George C.. University of Western Australia; AustraliaFil: Millán, Raúl Daniel. Universidad Nacional de Cuyo. Facultad de Ciencias Aplicadas a la Industria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Joldes, Grand R.. University of Western Australia; AustraliaFil: Miller, Karol. Cardiff University; Reino Unido. University of Western Australia; AustraliaFil: Pueyo, Esther. Centro de Investigacion Biomedica En Red.; España. Universidad de Zaragoza; EspañaFil: Wittek, Adam. University of Western Australia; Australi

    Development and Validation of a Hybrid Virtual/Physical Nuss Procedure Surgical Trainer

    Get PDF
    With continuous advancements and adoption of minimally invasive surgery, proficiency with nontrivial surgical skills involved is becoming a greater concern. Consequently, the use of surgical simulation has been increasingly embraced by many for training and skill transfer purposes. Some systems utilize haptic feedback within a high-fidelity anatomically-correct virtual environment whereas others use manikins, synthetic components, or box trainers to mimic primary components of a corresponding procedure. Surgical simulation development for some minimally invasive procedures is still, however, suboptimal or otherwise embryonic. This is true for the Nuss procedure, which is a minimally invasive surgery for correcting pectus excavatum (PE) – a congenital chest wall deformity. This work aims to address this gap by exploring the challenges of developing both a purely virtual and a purely physical simulation platform of the Nuss procedure and their implications in a training context. This work then describes the development of a hybrid mixed-reality system that integrates virtual and physical constituents as well as an augmentation of the haptic interface, to carry out a reproduction of the primary steps of the Nuss procedure and satisfy clinically relevant prerequisites for its training platform. Furthermore, this work carries out a user study to investigate the system’s face, content, and construct validity to establish its faithfulness as a training platform

    Stents for transcatheter aortic valve replacement

    Get PDF
    Rheumatic heart disease (RHD) is the leading cause of aortic valve disease in the world. Surgery to repair or replace the diseased valves is the only means to save a patient's life once the disease becomes symptomatic. Transcatheter aortic valve replacement (TAVR) has revolutionised the treatment of age-related degenerative aortic valve disease, but is currently not suitable for the majority of RHD sufferers due to the rapid degeneration of flexible leaflet valves in younger patients, contraindications of commercial devices to regurgitant or non-calcific aortic valve disease, and also due to resource or funding limitations. The current research project aimed to develop and test novel compressible balloon-expandable stents suitable for patients with symptomatic rheumatic aortic valve disease, and which would allow for a percutaneous polymeric valve to be manufactured, be crimped onto balloon-based devices, and be expanded into a compliant or non-calcific native aortic valve. Several stent concepts were developed and evaluated using Finite Element Analysis (FEA) and two favoured concepts were selected for more complex FEA, in which the balloon was simulated using an Ogden material model, and rigorous testing. The stent material, a nickel-cobalt-chromium alloy, was modelled as an isotropic elasto-plastic material with isotropic hardening. The novel stent designs incorporated a native leaflet-mimicking crown shape for continuous leaflet attachment and mechanisms to anchor the stented valve within compliant aortic roots. The first of the favoured designs provided tactile location during delivery and anchored using self-expanding arms on a balloon-expandable frame of the same material ("self-locating stents"). The second design anchored using arms that protruded during deployment as a consequence of plastic deformation incurred during crimping ("expanding arm stents"). Prototypes were successfully manufactured through laser cutting and electropolishing and showed good surface quality. In vitro testing included determination of crimping and expansion behaviour and measurement of mechanical properties such as resistance to migration in the anatomy. Valve performance was evaluated through in vitro haemodynamics in a pulse duplicator and durability was tested in a high-cycle fatigue tester. Simulated use testing was performed using cadaveric animal hearts. Finally, valves were also implanted into the aortic valve position of pigs (in acute termination experiments) through a transapical approach in order to verify valve deployment behaviour and function in vivo, and determine the stent's ability to anchor in the native anatomy. Stents could be crimped to diameters below 6mm and deployed using commercial balloons and proprietary non-occlusive deployment devices. FEA simulations of stent crimping and deployment matched experimental behaviour well and provide a tool to optimise stent performance. Peak Von Mises stresses during deployment (1437 MPa and 1633 MPa for self-locating and expanding arm stents, respectively) were comparable to a "zig-zag" stent simulated for control purposes (1650 MPa). Radial strength, evaluated for expanding arm stents, was lower than the Control stent (116 N vs. 347 N). This design, although predicted to be safe under fatigue loading, had a lower fatigue safety factor than the Control stent. Stents resisted migration to forces of at least 22 N, which is four times greater than physiological loading on the valves. Polymeric valves incorporating the stents were constructed and demonstrated good in vitro haemodynamic performance (Effective Orifice Areas ≥2.0cm², ΔP<9 mmHg, regurgitation <6%) and durability of over 400 million cycles. Designs functioned as intended in simulated use tests. Valves constructed using self-locating stents could be successfully deployed without rapid pacing in eight of nine pigs, and valve position was correct in seven of these. Valves of expanding arm stents remained anchored in six of eight attempted implants in pigs. This study has demonstrated proof of concept for a novel balloon-expandable stent for a polymeric transcatheter heart valve that is capable of anchoring in a compliant native aortic valve

    Real-time hybrid cutting with dynamic fluid visualization for virtual surgery

    Get PDF
    It is widely accepted that a reform in medical teaching must be made to meet today's high volume training requirements. Virtual simulation offers a potential method of providing such trainings and some current medical training simulations integrate haptic and visual feedback to enhance procedure learning. The purpose of this project is to explore the capability of Virtual Reality (VR) technology to develop a training simulator for surgical cutting and bleeding in a general surgery

    Impact of Soft Tissue Heterogeneity on Augmented Reality for Liver Surgery

    Get PDF
    International audienceThis paper presents a method for real-time augmented reality of internal liver structures during minimally invasive hepatic surgery. Vessels and tumors computed from pre-operative CT scans can be overlaid onto the laparoscopic view for surgery guidance. Compared to current methods, our method is able to locate the in-depth positions of the tumors based on partial three-dimensional liver tissue motion using a real-time biomechanical model. This model permits to properly handle the motion of internal structures even in the case of anisotropic or heterogeneous tissues, as it is the case for the liver and many anatomical structures. Experimentations conducted on phantom liver permits to measure the accuracy of the augmentation while real-time augmentation on in vivo human liver during real surgery shows the benefits of such an approach for minimally invasive surgery

    Translating computational modelling tools for clinical practice in congenital heart disease

    Get PDF
    Increasingly large numbers of medical centres worldwide are equipped with the means to acquire 3D images of patients by utilising magnetic resonance (MR) or computed tomography (CT) scanners. The interpretation of patient 3D image data has significant implications on clinical decision-making and treatment planning. In their raw form, MR and CT images have become critical in routine practice. However, in congenital heart disease (CHD), lesions are often anatomically and physiologically complex. In many cases, 3D imaging alone can fail to provide conclusive information for the clinical team. In the past 20-30 years, several image-derived modelling applications have shown major advancements. Tools such as computational fluid dynamics (CFD) and virtual reality (VR) have successfully demonstrated valuable uses in the management of CHD. However, due to current software limitations, these applications have remained largely isolated to research settings, and have yet to become part of clinical practice. The overall aim of this project was to explore new routes for making conventional computational modelling software more accessible for CHD clinics. The first objective was to create an automatic and fast pipeline for performing vascular CFD simulations. By leveraging machine learning, a solution was built using synthetically generated aortic anatomies, and was seen to be able to predict 3D aortic pressure and velocity flow fields with comparable accuracy to conventional CFD. The second objective was to design a virtual reality (VR) application tailored for supporting the surgical planning and teaching of CHD. The solution was a Unity-based application which included numerous specialised tools, such as mesh-editing features and online networking for group learning. Overall, the outcomes of this ongoing project showed strong indications that the integration of VR and CFD into clinical settings is possible, and has potential for extending 3D imaging and supporting the diagnosis, management and teaching of CHD

    Development and Validation Methodology of the Nuss Procedure Surgical Planner

    Get PDF
    Pectus excavatum (PE) is a congenital chest wall deformity which is characterized, in most cases, by a deep depression of the sternum. A minimally invasive technique for the repair of PE (MIRPE), often referred to as the Nuss procedure, has been proven to be more advantageous than many other PE treatment techniques. The Nuss procedure consists of placement of a metal bar(s) underneath the sternum, thereby forcibly changing the geometry of the ribcage. Because of the prevalence of PE and the popularity of the Nuss procedure, the demand to perform this surgery is greater than ever. Therefore, a Nuss procedure surgical planner would be an invaluable planning tool ensuring an optimal physiological and aesthetic outcome. In this dissertation, the development and validation of the Nuss procedure planner is investigated. First, a generic model of the ribcage is developed to overcome the issue of missing cartilage when PE ribcages are segmented and facilitate the flexibility of the model to accommodate a range of deformity. Then, the CT data collected from actual patients with PE is used to create a set of patient specific finite element models. Based on finite element analyses performed over those models, a set force-displacement data set is created. This data is used to train an artificial neural network to generalize the data set. In order to evaluate the planning process, a methodology which uses an average shape of the chest for comparison with results of the Nuss procedure planner is developed. This method is based on a sample of normal chests obtained from the ODU male population using laser surface scanning and overcomes challenging issues such as hole-filling, scan registration and consistency. Additionally, this planning simulator is optimized so that it can be used for training purposes. Haptic feedback and inertial tracking is implemented, and the force-displacement model is approximated using a neural network approach and evaluated for real-time performance. The results show that it is possible to utilize this approximation of the force-displacement model for the Nuss procedure simulator. The detailed ribcage model achieves real-time performance

    Fluid-structure interaction modelling of a patient-specific arteriovenous access fistula

    Get PDF
    This research forms part of an interdisciplinary project that aims to improve the detailed understanding of the haemodynamics and vascular mechanics in arteriovenous shunts that are required for haemodialysis treatments. A combination of new PCMRA imaging and computational modelling of in vivo blood flow aims to determine the haemodynamic conditions that may lead to the high failure rate of vascular access in these circumstances. This thesis focuses on developing a patient-specific fluid-structure interaction (FSI) model of a PC-MRA imaged arteriovenous fistula. The numerical FSI model is developed and simulated within the commercial multiphysics simulation package ANSYS® Academic Research, Release 16. The blood flow is modelled as a Newtonian fluid with the finite-volume method solver ANSYS® Fluent®. A pulsatile mass-flow boundary condition is applied at the artery inlet and a three-element Windkessel model at the artery and vein outlets. ANSYS® Mechanical™, a finite element method solver, is used to model the nonlinear behaviour of the vessel walls. The artery and vein walls are assumed to follow a third-order Yeoh model, and are differentiated by thickness and by material strength characteristics. The staggered FSI model is configured and executed in ANSYS® Workbench™, forming a semi-implicit coupling of the blood flow and vessel wall models. This work shows the effectiveness of combining a number of stabilisation techniques to simultaneously overcome the added-mass effect and optimise the efficiency of the overall model. The PC-MRA data, fluid model, and FSI model show almost identical flow features in the fistula; this applies in particular to a flow recirculation region in the vein that could potentially lead to fistula failure
    corecore