202 research outputs found

    Mass movement susceptibility mapping using satellite optical imagery compared with InSAR monitoring: Zigui County, Three Gorges region, China

    Get PDF
    Mass movements on steep slopes are a major hazard to communities and infrastructure in the Three Gorges region, China. Developing susceptibility maps of mass movements is therefore very important in both current and future land use planning. This study employed satellite optical imagery and an ASTER GDEM (15 m) to derive various parameters (namely geology; slope gradient; proximity to drainage networks and proximity to lineaments) in order to create a GIS-based map of mass movement susceptibility. This map was then evaluated using highly accurate deformation signals processed using the Persistent Scatterer (PS) InSAR technique. Areas of high susceptibility correspond well to points of high subsidence, which provides a strong support of our susceptibility map

    Landslide characterization applying Sentinel-1 images and InSAR technique: The Muyubao landslide in the Three Gorges Reservoir area, China

    Get PDF
    Landslides are a common natural hazard that causes casualties and unprecedented economic losses every year, especially in vulnerable developing countries. Considering the high cost of in-situ monitoring equipment and the sparse coverage of monitoring points, the Sentinel-1 images and Interferometric Synthetic Aperture Radar (InSAR) technique were used to conduct landslide monitoring and analysis. The Muyubao landslide in the Three Gorges Reservoir area in China was taken as a case study. A total of 37 images from March 2016 to September 2017 were collected, and the displacement time series were extracted using the Stanford Method for Persistent Scatterer (StaMPS) small baselines subset method. The comparison to global positioning system monitoring results indicated that the InSAR processing of the Muyubao landslide was accurate and reliable. Combined with the field investigation, the deformation evolution and its response to triggering factors were analyzed. During this monitoring period, the creeping process of the Muyubao landslide showed obvious spatiotemporal deformation differences. The changes in the reservoir water level were the trigger of the Muyubao landslide, and its deformation mainly occurred during the fluctuation period and high-water level period of the reservoir

    Revealing the time lag between slope stability and reservoir water fluctuation from InSAR observations and wavelet tools— a case study in Maoergai Reservoir (China)

    Get PDF
    Reservoir water fluctuation in supply and storage cycle have strong triggering effects on landslides on both sides of reservoir banks. Early identification of reservoir landslides and revealing the relationship between slope stability and the triggering factors including reservoir level and rainfall, are of great significance in further protecting nearby residents’ lives and properties. In this paper, based on the small baseline subset time series method (SBAS-InSAR), the potential landslides with active displacements in the river bank of Maoergai hydropower station in Heishui County from 2018 to 2020 were monitored with Sentinel-1 data. As a result, a total of 20 unstable slopes were detected. Subsequently, it was found through a gray correlation analysis that the fluctuation of the reservoir water level is the main triggering factor for the displacement on unstable slopes. This paper applied wavelet tools to quantify the time lag between slope stability and reservoir water fluctuation, revealing that the displacement exhibits a seasonal trend, whose high-frequency signal displacement has an interannual period (1 year). Based on the Cross Wavelet Transform (XWT) analysis, under the interannual scale of one year, the reservoir water fluctuation and nonlinear displacement show a clear common power in wavelet. Additionally, a time lag of 65–120 days between slope stability and reservoir water fluctuations has been found, indicating that the non-linear displacements were behind the water level changes. Among the factors affecting the time lag, the elevation of the points and their distance to the bank shore show Pearson’s correlation coefficients of 0.69 and 0.70, respectively. The observed time lag and correlations could be related to the gradual saturation/drainage processes of the slope and the drainage path. This paper demonstrates the technical support to quantitatively reveal the time lag between slope stability and reservoir water fluctuation by InSAR and wavelet tools, providing strong support for the analysis of the mechanisms of landslides in Maoergai reservoir area.The work was supported by the National Natural Science Foundation of China (Grant No. 41801391), ESA-MOST China DRAGON-5 project (ref. 59339) and the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2020Z012) and Sichuan Science Foundation for Outstanding Youth (23NSFJQ0167)

    Using wavelet tools to analyse seasonal variations from InSAR time-series data: a case study of the Huangtupo landslide

    Get PDF
    Synthetic aperture radar interferometry (InSAR) has proven to be a powerful tool for monitoring landslide movements with a wide spatial and temporal coverage. Interpreting landslide displacement time-series derived from InSAR techniques is a major challenge for understanding relationships between triggering factors and slope displacements. In this study, we propose the use of various wavelet tools, namely, continuous wavelet transform (CWT), cross wavelet transform (XWT) and wavelet coherence (WTC) for interpreting InSAR time-series information for a landslide. CWT enables time-series records to be analysed in time-frequency space, with the aim of identifying localized intermittent periodicities. Similarly, XWT and WTC help identify the common power and relative phase between two time-series records in time-frequency space, respectively. Statistically significant coherence and confidence levels against red noise (also known as brown noise or random walk noise) can be calculated. Taking the Huangtupo landslide (China) as an example, we demonstrate the capabilities of these tools for interpreting InSAR time-series information. The results show the Huangtupo slope is affected by an annual displacement periodicity controlled by rainfall and reservoir water level. Reservoir water level, which is completely regulated by the dam activity, is mainly in ‘anti-phase’ with natural rainfall, due to flood control in the Three Gorges Project. The seasonal displacements of the Huangtupo landslide is found to be ‘in-phase’ with respect to reservoir water level and the rainfall towards the front edge of the slope and to rainfall at the higher rear of the slope away from the reservoir.R. Tomás was supported by the Generalitat Valenciana fellowship BEST-2011/225 and by the Ministry of Education, Culture and Sport trough the project PRX14/00100. Part of this work is also supported by the Spanish Ministry of Economy and Competitiveness and EU FEDER funds under project TEC2011-28201-C02-02, by the Natural Environmental Research Council (NERC) through the GAS and LICS projects (ref. NE/H001085/1 and NE/K010794/1, respectively) as well as the ESA-MOST DRAGON-3 projects (ref. 10607 and 10665)

    Evaluation of the Use of Sub-Pixel Offset Tracking Techniques to Monitor Landslides in Densely Vegetated Steeply Sloped Areas

    Get PDF
    Sub-Pixel Offset Tracking (sPOT) is applied to derive high-resolution centimetre-level landslide rates in the Three Gorges Region of China using TerraSAR-X Hi-resolution Spotlight (TSX HS) space-borne SAR images. These results contrast sharply with previous use of conventional differential Interferometric Synthetic Aperture Radar (DInSAR) techniques in areas with steep slopes, dense vegetation and large variability in water vapour which indicated around 12% phase coherent coverage. By contrast, sPOT is capable of measuring two dimensional deformation of large gradient over steeply sloped areas covered in dense vegetation. Previous applications of sPOT in this region relies on corner reflectors (CRs), (high coherence features) to obtain reliable measurements. However, CRs are expensive and difficult to install, especially in remote areas; and other potential high coherence features comparable with CRs are very few and outside the landslide boundary. The resultant sub-pixel level deformation field can be statistically analysed to yield multi-modal maps of deformation regions. This approach is shown to have a significant impact when compared with previous offset tracking measurements of landslide deformation, as it is demonstrated that sPOT can be applied even in densely vegetated terrain without relying on high-contrast surface features or requiring any de-noising process

    InSAR as a tool for monitoring hydropower projects: A review

    Get PDF
    This paper provides a review of using Interferometric Synthetic Aperture Radar (InSAR), a microwave remote sensing technique, for deformation monitoring of hydroelectric power projects, a critical infrastructure that requires consistent and reliable monitoring. Almost all major dams around the world were built for the generation of hydropower. InSAR can enhance dam safety by providing timely settlement measurements at high spatial-resolution. This paper provides a holistic view of different InSAR deformation monitoring techniques such as Differential Synthetic Aperture Radar Interferometry (DInSAR), Ground-Based Synthetic Aperture Radar (GBInSAR), Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR), Multi-Temporal Interferometric Synthetic Aperture Radar (MTInSAR), Quasi-Persistent Scatterer Interferometric Synthetic Aperture Radar (QPSInSAR) and Small BAseline Subset (SBAS). PSInSAR, GBInSAR, MTInSAR, and DInSAR techniques were quite commonly used for deformation studies. These studies demonstrate the advantage of InSAR-based techniques over other conventional methods, which are laborious, costly, and sometimes unachievable. InSAR technology is also favoured for its capability to provide monitoring data at all times of day or night, in all-weather conditions, and particularly for wide areas with mm-scale precision. However, the method also has some disadvantages, such as the maximum deformation rate that can be monitored, and the location for monitoring cannot be dictated. Through this review, we aim to popularize InSAR technology to monitor the deformation of dams, which can also be used as an early warning method to prevent any unprecedented catastrophe. This study also discusses some case studies from southern India to demonstrate the capabilities of InSAR to indirectly monitor dam health

    Landslide displacement forecasting using deep learning and monitoring data across selected sites

    Get PDF
    Accurate early warning systems for landslides are a reliable risk-reduction strategy that may significantly reduce fatalities and economic losses. Several machine learning methods have been examined for this purpose, underlying deep learning (DL) models’ remarkable prediction capabilities. The long short-term memory (LSTM) and gated recurrent unit (GRU) algorithms are the sole DL model studied in the extant comparisons. However, several other DL algorithms are suitable for time series forecasting tasks. In this paper, we assess, compare, and describe seven DL methods for forecasting future landslide displacement: multi-layer perception (MLP), LSTM, GRU, 1D convolutional neural network (1D CNN), 2xLSTM, bidirectional LSTM (bi-LSTM), and an architecture composed of 1D CNN and LSTM (Conv-LSTM). The investigation focuses on four landslides with different geographic locations, geological settings, time step dimensions, and measurement instruments. Two landslides are located in an artificial reservoir context, while the displacement of the other two is influenced just by rainfall. The results reveal that the MLP, GRU, and LSTM models can make reliable predictions in all four scenarios, while the Conv- LSTM model outperforms the others in the Baishuihe landslide, where the landslide is highly seasonal. No evident performance differences were found for landslides inside artificial reservoirs rather than outside. Furthermore, the research shows that MLP is better adapted to forecast the highest displacement peaks, while LSTM and GRU are better suited to model lower displacement peaks. We believe the findings of this research will serve as a precious aid when implementing a DL-based landslide early warning system (LEWS).SUPPORTO SCIENTIFICO PER L’OTTIMIZZAZIONE, IMPLEMENTAZIONE E GESTIONE DEL SISTEMA DI MONITORAGGIO CON AGGIORNAMENTO DELLE SOGLIE DI ALLERTAMENTO DEL FENOMENO FRANOSO DI SANT’ANDREA – PERAROLO DI CADORE (BL)” and the Spanish Grant “SARAI, PID2020-116540RB-C21,MCIN/AEI/10.13039/501100011033” and “RISKCOASTInSAR displacement data of the El Arrecife landslideGeohazard Exploitation Platform (GEP) of the European Space AgencyNoR Projects Sponsorship (Project ID: 63737

    The long-term failure processes of a large reactivated landslide in the Xiluodu reservoir area based on InSAR technology

    Get PDF
    After the first impoundment of the reservoir, many landslides seriously threatened the safety of the reservoir. Accurate determination of the relationship between the landslide deformation characteristics and water-level fluctuations is crucial. However, with the increasing number of water-level fluctuation cycles, the deformation characteristics of the landslides were also changing, and long-term continuous monitoring to capture the failure process of reservoir landslides is necessary. A large reacted landslide in the Xiluodu reservoir was set as an example, using InSAR technology to seek its variations of deformation characteristics over nine years. The local deformation rate and annual maximum deformation area variation were analyzed by InSAR technology based on Sentinel-1 descending SAR data from October 2014 to June 2022. According to the regional deformation characteristics, the landslide was divided into three zones: Zone I above the elevation of 950 m; Zone II below it; the front edge of Zone II, where the collapse happened, was further divided into Zone III. In general, the accumulated deformation in Zone I was the largest, followed by Zone III, and Zone II was the smallest. The average deformation rate of Zone II was the smallest. Zone I of NLJL was mainly affected by the drawdown of reservoir water level, and the impacts of water-level rising and drawdown on Zone II and Zone III were similar. After analyzing a nine-year variation of the deformation area, the deformation mechanism of NLJL changed from a retrogressive type to a progressive one after the first impoundment and then changed back to a retrogressive one after 2017. The impact of reservoir impoundment on NLJL was most substantial in the first three years after the first impoundment

    Analysing landslides in the Three Gorges Region (China) using frequently acquired SAR images

    Get PDF
    Spaceborne Synthetic Aperture Radar (SAR) sensors obtain regular and frequent radar images from which ground motion can be precisely detected using a variety of different techniques. The ability to remotely measure slope displacements over large regions has many uses and advantages, although the limitations of an increasingly common technique, Differential SAR Interferometry (D-InSAR), must be considered to avoid the misinterpretation of results. Areas of low coherence and the geometrical effects of mountainous terrain in SAR imagery are known to hinder the exploitation of D-InSAR results. A further major limitation for landslide studies is the assumption that variable rates of movement over a given distance cannot exceed a threshold value, dependent upon the SAR image pixel spacing, the radar sensor wavelength and satellite revisit frequency. This study evaluates the use of three SAR image modes from TerraSAR-X and ENVISAT satellites for monitoring slow-moving landslides in the densely vegetated Three Gorges region, China. Low coherence and episodically fast movements are shown to exceed the measureable limit for regular D-InSAR analysis even for the highest resolution, 11-day interferograms. Subsequently, sub-pixel offset time-series techniques applied to corner reflectors and natural targets are developed as a robust method of resolving time-variable displacements. Verifiable offsets are generated with the TerraSAR-X imagery and the precise movement history of landslides is obtained over a period of up to four years. The capability to derive two-dimensional movements from sub-pixel offsets is used to infer a rotational failure mechanism for the most active landslide detected, and a greater understanding of the landslide behaviour is achieved through comparisons with likely triggering factors and 2D limit equilibrium slope stability analysis
    • 

    corecore