535 research outputs found

    Deformable models with parameter functions for cardiac motion analysis from tagged MRI data

    Full text link

    Meshless deformable models for LV motion analysis

    Get PDF
    We propose a novel meshless deformable model for in vivo cardiac left ventricle (LV) 3D motion estimation. As a relatively new technology, tagged MRI (tMRI) provides a direct and noninvasive way to reveal local deformation of the myocardium, which creates a large amount of heart motion data which requiring quantitative analysis. In our study, we sample the heart motion sparsely at intersections of three sets of orthogonal tagging planes and then use a new meshless deformable model to recover the dense 3D motion of the myocardium temporally during the cardiac cycle. We compute external forces at tag intersections based on tracked local motion and redistribute the force to meshless particles throughout the myocardium. Internal constraint forces at particles are derived from local strain energy using a Moving Least Squares (MLS) method. The dense 3D motion field is then computed and updated using the Lagrange equation. The new model avoids the singularity problem of mesh-based models and is capable of tracking large deformation with high efficiency and accuracy. In particular, the model performs well even when the control points (tag intersections) are relatively sparse. We tested the performance of the meshless model on a numerical phantom, as well as in vivo heart data of healthy subjects and patients. The experimental results show that the meshless deformable model can fully recover the myocardium motion in 3D. 1

    Model-Based Shape and Motion Analysis: Left Ventricle of a Heart

    Get PDF
    The accurate and clinically useful estimation of the shape, motion, and deformation of the left ventricle of a heart (LV) is an important yet open research problem. Recently, computer vision techniques for reconstructing the 3-D shape and motion of the LV have been developed. The main drawback of these techniques, however, is that their models are formulated in terms of either too many local parameters that require non-trivial processing to be useful for close to real time diagnosis, or too few parameters to offer an adequate approximation to the LV motion. To address the problem, we present a new class of volumetric primitives for a compact and accurate LV shape representation in which model parameters are functions. Lagrangian dynamics are employed to convert geometric models into dynamic models that can deform according to the forces manifested in the data points. It is thus possible to make a precise estimation of the deformation of the LV shape endocardial, epicardial and anywhere in between with a small number of intuitive parameter functions. We believe that the proposed technique has a wide range of potential applications. In this thesis, we demonstrate the possibility by applying it to the 3-D LV shape and motion characterization from magnetic tagging data (MRI-SPAMM). We show that the results of our experiments with normal and abnormal heart data enable us to quantitatively verify the physicians\u27 qualitative conception of the left ventricular wall motion

    Model-based Analysis of Cardiac Motion from Tagged MRI Data

    Get PDF
    We develop a new method for analyzing the motion of the left ventricle (LV) of a heart from tagged MRI data. Our technique is based on the development of a new class of physics-based deformable models whose parameters are functions allowing the definition of new parameterized primitives and parameterized deformations. These parameter functions improve the accuracy of shape description through the use of a few intuitive parameters such as functional twisting. Furthermore, these parameters require no complex post-processing in order to be used by a physician. Using a physics-based approach, we convert these geometric models into deformable models that deform due to forces exerted from the datapoints and conform to the given dataset. We present experiments involving the extraction of shape and motion of the LV from MRI-SPAMM data based on a few parameter functions. Furthermore, by plotting the variations over time of the extracted model parameters from normal and abnormal heart data we are able to characterize quantitatively their differences

    Robust Cardiac Motion Estimation using Ultrafast Ultrasound Data: A Low-Rank-Topology-Preserving Approach

    Get PDF
    Cardiac motion estimation is an important diagnostic tool to detect heart diseases and it has been explored with modalities such as MRI and conventional ultrasound (US) sequences. US cardiac motion estimation still presents challenges because of the complex motion patterns and the presence of noise. In this work, we propose a novel approach to estimate the cardiac motion using ultrafast ultrasound data. -- Our solution is based on a variational formulation characterized by the L2-regularized class. The displacement is represented by a lattice of b-splines and we ensure robustness by applying a maximum likelihood type estimator. While this is an important part of our solution, the main highlight of this paper is to combine a low-rank data representation with topology preservation. Low-rank data representation (achieved by finding the k-dominant singular values of a Casorati Matrix arranged from the data sequence) speeds up the global solution and achieves noise reduction. On the other hand, topology preservation (achieved by monitoring the Jacobian determinant) allows to radically rule out distortions while carefully controlling the size of allowed expansions and contractions. Our variational approach is carried out on a realistic dataset as well as on a simulated one. We demonstrate how our proposed variational solution deals with complex deformations through careful numerical experiments. While maintaining the accuracy of the solution, the low-rank preprocessing is shown to speed up the convergence of the variational problem. Beyond cardiac motion estimation, our approach is promising for the analysis of other organs that experience motion.Comment: 15 pages, 10 figures, Physics in Medicine and Biology, 201

    Deformable mesh model for cardiac motion estimation from MRI data

    Get PDF
    Projecte final de carrera realitzat en col.laboraciĂł amb l'Illinois Institute of TechnologyThe use of technology in medical applications has expanded tremendously in the last 50 years, playing an important role in diagnosis and treatment of disease. As a consequence of this growth, it has been possible to develop new techniques and processes which allows scientists and physicians to extract potentially life-saving information by peering noninvasively into the human body. One of these techniques, Magnetic Resonance Imaging, has the capacity of providing data which contain information about motion of human tissue. In this project we exploit this characteristic to present a model for estimating left ventricular heart motion through a whole cardiac cycle. The model is based on the utilization of a non-rigid deformable mesh which tracks the intensity variations on the datasets of MRI images. The use of a mesh allows us to interpolate the motion on every point of the myocardial tissue. Although still in his first steps of development, preliminary results here presented demonstrate great potential of our model in terms of efficiency and flexibility versus the other existing models. It constitutes a good alternative for developing full 4D heart models in the future

    Image based approach for early assessment of heart failure.

    Get PDF
    In diagnosing heart diseases, the estimation of cardiac performance indices requires accurate segmentation of the left ventricle (LV) wall from cine cardiac magnetic resonance (CMR) images. MR imaging is noninvasive and generates clear images; however, it is impractical to manually process the huge number of images generated to calculate the performance indices. In this dissertation, we introduce a novel, fast, robust, bi-directional coupled parametric deformable models that are capable of segmenting the LV wall borders using first- and second-order visual appearance features. These features are embedded in a new stochastic external force that preserves the topology of the LV wall to track the evolution of the parametric deformable models control points. We tested the proposed segmentation approach on 15 data sets in 6 infarction patients using the Dice similarity coefficient (DSC) and the average distance (AD) between the ground truth and automated segmentation contours. Our approach achieves a mean DSC value of 0.926±0.022 and mean AD value of 2.16±0.60 mm compared to two other level set methods that achieve mean DSC values of 0.904±0.033 and 0.885±0.02; and mean AD values of 2.86±1.35 mm and 5.72±4.70 mm, respectively. Also, a novel framework for assessing both 3D functional strain and wall thickening from 4D cine cardiac magnetic resonance imaging (CCMR) is introduced. The introduced approach is primarily based on using geometrical features to track the LV wall during the cardiac cycle. The 4D tracking approach consists of the following two main steps: (i) Initially, the surface points on the LV wall are tracked by solving a 3D Laplace equation between two subsequent LV surfaces; and (ii) Secondly, the locations of the tracked LV surface points are iteratively adjusted through an energy minimization cost function using a generalized Gauss-Markov random field (GGMRF) image model in order to remove inconsistencies and preserve the anatomy of the heart wall during the tracking process. Then the circumferential strains are straight forward calculated from the location of the tracked LV surface points. In addition, myocardial wall thickening is estimated by co-allocation of the corresponding points, or matches between the endocardium and epicardium surfaces of the LV wall using the solution of the 3D laplace equation. Experimental results on in vivo data confirm the accuracy and robustness of our method. Moreover, the comparison results demonstrate that our approach outperforms 2D wall thickening estimation approaches

    Deformable mesh model for cardiac motion estimation from MRI data

    Get PDF
    Projecte final de carrera realitzat en col.laboraciĂł amb l'Illinois Institute of TechnologyThe use of technology in medical applications has expanded tremendously in the last 50 years, playing an important role in diagnosis and treatment of disease. As a consequence of this growth, it has been possible to develop new techniques and processes which allows scientists and physicians to extract potentially life-saving information by peering noninvasively into the human body. One of these techniques, Magnetic Resonance Imaging, has the capacity of providing data which contain information about motion of human tissue. In this project we exploit this characteristic to present a model for estimating left ventricular heart motion through a whole cardiac cycle. The model is based on the utilization of a non-rigid deformable mesh which tracks the intensity variations on the datasets of MRI images. The use of a mesh allows us to interpolate the motion on every point of the myocardial tissue. Although still in his first steps of development, preliminary results here presented demonstrate great potential of our model in terms of efficiency and flexibility versus the other existing models. It constitutes a good alternative for developing full 4D heart models in the future

    Neural Deformable Models for 3D Bi-Ventricular Heart Shape Reconstruction and Modeling from 2D Sparse Cardiac Magnetic Resonance Imaging

    Full text link
    We propose a novel neural deformable model (NDM) targeting at the reconstruction and modeling of 3D bi-ventricular shape of the heart from 2D sparse cardiac magnetic resonance (CMR) imaging data. We model the bi-ventricular shape using blended deformable superquadrics, which are parameterized by a set of geometric parameter functions and are capable of deforming globally and locally. While global geometric parameter functions and deformations capture gross shape features from visual data, local deformations, parameterized as neural diffeomorphic point flows, can be learned to recover the detailed heart shape.Different from iterative optimization methods used in conventional deformable model formulations, NDMs can be trained to learn such geometric parameter functions, global and local deformations from a shape distribution manifold. Our NDM can learn to densify a sparse cardiac point cloud with arbitrary scales and generate high-quality triangular meshes automatically. It also enables the implicit learning of dense correspondences among different heart shape instances for accurate cardiac shape registration. Furthermore, the parameters of NDM are intuitive, and can be used by a physician without sophisticated post-processing. Experimental results on a large CMR dataset demonstrate the improved performance of NDM over conventional methods.Comment: Accepted by ICCV 202
    • …
    corecore