152 research outputs found

    Mindboggle: Automated brain labeling with multiple atlases

    Get PDF
    BACKGROUND: To make inferences about brain structures or activity across multiple individuals, one first needs to determine the structural correspondences across their image data. We have recently developed Mindboggle as a fully automated, feature-matching approach to assign anatomical labels to cortical structures and activity in human brain MRI data. Label assignment is based on structural correspondences between labeled atlases and unlabeled image data, where an atlas consists of a set of labels manually assigned to a single brain image. In the present work, we study the influence of using variable numbers of individual atlases to nonlinearly label human brain image data. METHODS: Each brain image voxel of each of 20 human subjects is assigned a label by each of the remaining 19 atlases using Mindboggle. The most common label is selected and is given a confidence rating based on the number of atlases that assigned that label. The automatically assigned labels for each subject brain are compared with the manual labels for that subject (its atlas). Unlike recent approaches that transform subject data to a labeled, probabilistic atlas space (constructed from a database of atlases), Mindboggle labels a subject by each atlas in a database independently. RESULTS: When Mindboggle labels a human subject's brain image with at least four atlases, the resulting label agreement with coregistered manual labels is significantly higher than when only a single atlas is used. Different numbers of atlases provide significantly higher label agreements for individual brain regions. CONCLUSION: Increasing the number of reference brains used to automatically label a human subject brain improves labeling accuracy with respect to manually assigned labels. Mindboggle software can provide confidence measures for labels based on probabilistic assignment of labels and could be applied to large databases of brain images

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    A Comprehensive Survey on Tools for Effective Alzheimer’s Disease Detection

    Get PDF
    Neuroimaging is considered as a valuable technique to study the structure and function of the human brain. Rapid advancement in medical imaging technologies has contributed significantly towards the development of neuroimaging tools. These tools focus on extracting and enhancing the relevant information from brain images, which facilitates neuroimaging experts to make better and quick decision for diagnosing enormous number of patients without requiring manual interventions. This paper describes the general outline of such tools including image file formats, ability to handle data from multiple modalities, supported platforms, implemented language, advantages and disadvantages. This brief review of tools gives a clear outlook for researchers to utilize existing techniques to handle the image data obtained from different modalities and focus further for improving and developing advanced tools

    Finite Element Modeling Driven by Health Care and Aerospace Applications

    Get PDF
    This thesis concerns the development, analysis, and computer implementation of mesh generation algorithms encountered in finite element modeling in health care and aerospace. The finite element method can reduce a continuous system to a discrete idealization that can be solved in the same manner as a discrete system, provided the continuum is discretized into a finite number of simple geometric shapes (e.g., triangles in two dimensions or tetrahedrons in three dimensions). In health care, namely anatomic modeling, a discretization of the biological object is essential to compute tissue deformation for physics-based simulations. This thesis proposes an efficient procedure to convert 3-dimensional imaging data into adaptive lattice-based discretizations of well-shaped tetrahedra or mixed elements (i.e., tetrahedra, pentahedra and hexahedra). This method operates directly on segmented images, thus skipping a surface reconstruction that is required by traditional Computer-Aided Design (CAD)-based meshing techniques and is convoluted, especially in complex anatomic geometries. Our approach utilizes proper mesh gradation and tissue-specific multi-resolution, without sacrificing the fidelity and while maintaining a smooth surface to reflect a certain degree of visual reality. Image-to-mesh conversion can facilitate accurate computational modeling for biomechanical registration of Magnetic Resonance Imaging (MRI) in image-guided neurosurgery. Neuronavigation with deformable registration of preoperative MRI to intraoperative MRI allows the surgeon to view the location of surgical tools relative to the preoperative anatomical (MRI) or functional data (DT-MRI, fMRI), thereby avoiding damage to eloquent areas during tumor resection. This thesis presents a deformable registration framework that utilizes multi-tissue mesh adaptation to map preoperative MRI to intraoperative MRI of patients who have undergone a brain tumor resection. Our enhancements with mesh adaptation improve the accuracy of the registration by more than 5 times compared to rigid and traditional physics-based non-rigid registration, and by more than 4 times compared to publicly available B-Spline interpolation methods. The adaptive framework is parallelized for shared memory multiprocessor architectures. Performance analysis shows that this method could be applied, on average, in less than two minutes, achieving desirable speed for use in a clinical setting. The last part of this thesis focuses on finite element modeling of CAD data. This is an integral part of the design and optimization of components and assemblies in industry. We propose a new parallel mesh generator for efficient tetrahedralization of piecewise linear complex domains in aerospace. CAD-based meshing algorithms typically improve the shape of the elements in a post-processing step due to high complexity and cost of the operations involved. On the contrary, our method optimizes the shape of the elements throughout the generation process to obtain a maximum quality and utilizes high performance computing to reduce the overheads and improve end-user productivity. The proposed mesh generation technique is a combination of Advancing Front type point placement, direct point insertion, and parallel multi-threaded connectivity optimization schemes. The mesh optimization is based on a speculative (optimistic) approach that has been proven to perform well on hardware-shared memory. The experimental evaluation indicates that the high quality and performance attributes of this method see substantial improvement over existing state-of-the-art unstructured grid technology currently incorporated in several commercial systems. The proposed mesh generator will be part of an Extreme-Scale Anisotropic Mesh Generation Environment to meet industries expectations and NASA\u27s CFD visio

    Segmentation of Infant Brain Using Nonnegative Matrix Factorization

    Get PDF
    This study develops an atlas-based automated framework for segmenting infants\u27 brains from magnetic resonance imaging (MRI). For the accurate segmentation of different structures of an infant\u27s brain at the isointense age (6-12 months), our framework integrates features of diffusion tensor imaging (DTI) (e.g., the fractional anisotropy (FA)). A brain diffusion tensor (DT) image and its region map are considered samples of a Markov-Gibbs random field (MGRF) that jointly models visual appearance, shape, and spatial homogeneity of a goal structure. The visual appearance is modeled with an empirical distribution of the probability of the DTI features, fused by their nonnegative matrix factorization (NMF) and allocation to data clusters. Projecting an initial high-dimensional feature space onto a low-dimensional space of the significant fused features with the NMF allows for better separation of the goal structure and its background. The cluster centers in the latter space are determined at the training stage by the K-means clustering. In order to adapt to large infant brain inhomogeneities and segment the brain images more accurately, appearance descriptors of both the first-order and second-order are taken into account in the fused NMF feature space. Additionally, a second-order MGRF model is used to describe the appearance based on the voxel intensities and their pairwise spatial dependencies. An adaptive shape prior that is spatially variant is constructed from a training set of co-aligned images, forming an atlas database. Moreover, the spatial homogeneity of the shape is described with a spatially uniform 3D MGRF of the second-order for region labels. In vivo experiments on nine infant datasets showed promising results in terms of the accuracy, which was computed using three metrics: the 95-percentile modified Hausdorff distance (MHD), the Dice similarity coefficient (DSC), and the absolute volume difference (AVD). Both the quantitative and visual assessments confirm that integrating the proposed NMF-fused DTI feature and intensity MGRF models of visual appearance, the adaptive shape prior, and the shape homogeneity MGRF model is promising in segmenting the infant brain DTI
    • …
    corecore