6 research outputs found

    Robust electromagnetically guided endoscopic procedure using enhanced particle swarm optimization for multimodal information fusion

    Full text link
    © 2015 American Association of Physicists in Medicine. Purpose: Electromagnetically guided endoscopic procedure, which aims at accurately and robustly localizing the endoscope, involves multimodal sensory information during interventions. However, it still remains challenging in how to integrate these information for precise and stable endoscopic guidance. To tackle such a challenge, this paper proposes a new framework on the basis of an enhanced particle swarm optimization method to effectively fuse these information for accurate and continuous endoscope localization. Methods: The authors use the particle swarm optimization method, which is one of stochastic evolutionary computation algorithms, to effectively fuse the multimodal information including preoperative information (i.e., computed tomography images) as a frame of reference, endoscopic camera videos, and positional sensor measurements (i.e., electromagnetic sensor outputs). Since the evolutionary computation method usually limits its possible premature convergence and evolutionary factors, the authors introduce the current (endoscopic camera and electromagnetic sensors) observation to boost the particle swarm optimization and also adaptively update evolutionary parameters in accordance with spatial constraints and the current observation, resulting in advantageous performance in the enhanced algorithm. Results: The experimental results demonstrate that the authors proposed method provides a more accurate and robust endoscopic guidance framework than state-of-the-art methods. The average guidance accuracy of the authors framework was about 3.0 mm and 5.6° while the previous methods show at least 3.9 mm and 7.0°. The average position and orientation smoothness of their method was 1.0 mm and 1.6°, which is significantly better than the other methods at least with (2.0 mm and 2.6°). Additionally, the average visual quality of the endoscopic guidance was improved to 0.29. Conclusions: A robust electromagnetically guided endoscopy framework was proposed on the basis of an enhanced particle swarm optimization method with using the current observation information and adaptive evolutionary factors. The authors proposed framework greatly reduced the guidance errors from (4.3, 7.8) to (3.0 mm, 5.6°), compared to state-of-the-art methods

    Image Registration to Map Endoscopic Video to Computed Tomography for Head and Neck Radiotherapy Patients

    Get PDF
    The purpose of this work was to explore the feasibility of registering endoscopic video to radiotherapy treatment plans for patients with head and neck cancer without physical tracking of the endoscope during the examination. Endoscopy-CT registration would provide a clinical tool that could be used to enhance the treatment planning process and would allow for new methods to study the incidence of radiation-related toxicity. Endoscopic video frames were registered to CT by optimizing virtual endoscope placement to maximize the similarity between the frame and the virtual image. Virtual endoscopic images were rendered using a polygonal mesh created by segmenting the airways of the head and neck with a density threshold. The optical properties of the virtual endoscope were matched to a calibrated model of the real endoscope. A novel registration algorithm was developed that takes advantage of physical constraints on the endoscope to effectively search the airways of the head and neck for the desired virtual endoscope coordinates. This algorithm was tested on rigid phantoms with embedded point markers and protruding bolus material. In these tests, the median registration accuracy was 3.0 mm for point measurements and 3.5 mm for surface measurements. The algorithm was also tested on four endoscopic examinations of three patients, in which it achieved a median registration accuracy of 9.9 mm. The uncertainties caused by the non-rigid anatomy of the head and neck and differences in patient positioning between endoscopic examinations and CT scans were examined by taking repeated measurements after placing the virtual endoscope in surface meshes created from different CT scans. Non-rigid anatomy introduced errors on the order of 1-3 mm. Patient positioning had a larger impact, introducing errors on the order of 3.5-4.5 mm. Endoscopy-CT registration in the head and neck is possible, but large registration errors were found in patients. The uncertainty analyses suggest a lower limit of 3-5 mm. Further development is required to achieve an accuracy suitable for clinical use

    Advanced Endoscopic Navigation:Surgical Big Data,Methodology,and Applications

    Get PDF
    随着科学技术的飞速发展,健康与环境问题日益成为人类面临的最重大问题之一。信息科学、计算机技术、电子工程与生物医学工程等学科的综合应用交叉前沿课题,研究现代工程技术方法,探索肿瘤癌症等疾病早期诊断、治疗和康复手段。本论文综述了计算机辅助微创外科手术导航、多模态医疗大数据、方法论及其临床应用:从引入微创外科手术导航概念出发,介绍了医疗大数据的术前与术中多模态医学成像方法、阐述了先进微创外科手术导航的核心流程包括计算解剖模型、术中实时导航方案、三维可视化方法及交互式软件技术,归纳了各类微创外科手术方法的临床应用。同时,重点讨论了全球各种手术导航技术在临床应用中的优缺点,分析了目前手术导航领域内的最新技术方法。在此基础上,提出了微创外科手术方法正向数字化、个性化、精准化、诊疗一体化、机器人化以及高度智能化的发展趋势。【Abstract】Interventional endoscopy (e.g., bronchoscopy, colonoscopy, laparoscopy, cystoscopy) is a widely performed procedure that involves either diagnosis of suspicious lesions or guidance for minimally invasive surgery in a variety of organs within the body cavity. Endoscopy may also be used to guide the introduction of certain items (e.g., stents) into the body. Endoscopic navigation systems seek to integrate big data with multimodal information (e.g., computed tomography, magnetic resonance images, endoscopic video sequences, ultrasound images, external trackers) relative to the patient's anatomy, control the movement of medical endoscopes and surgical tools, and guide the surgeon's actions during endoscopic interventions. Nevertheless, it remains challenging to realize the next generation of context-aware navigated endoscopy. This review presents a broad survey of various aspects of endoscopic navigation, particularly with respect to the development of endoscopic navigation techniques. First, we investigate big data with multimodal information involved in endoscopic navigation. Next, we focus on numerous methodologies used for endoscopic navigation. We then review different endoscopic procedures in clinical applications. Finally, we discuss novel techniques and promising directions for the development of endoscopic navigation.X.L. acknowledges funding from the Fundamental Research Funds for the Central Universities. T.M.P. acknowledges funding from the Canadian Foundation for Innovation, the Canadian Institutes for Health Research, the National Sciences and Engineering Research Council of Canada, and a grant from Intuitive Surgical Inc

    Surgical Subtask Automation for Intraluminal Procedures using Deep Reinforcement Learning

    Get PDF
    Intraluminal procedures have opened up a new sub-field of minimally invasive surgery that use flexible instruments to navigate through complex luminal structures of the body, resulting in reduced invasiveness and improved patient benefits. One of the major challenges in this field is the accurate and precise control of the instrument inside the human body. Robotics has emerged as a promising solution to this problem. However, to achieve successful robotic intraluminal interventions, the control of the instrument needs to be automated to a large extent. The thesis first examines the state-of-the-art in intraluminal surgical robotics and identifies the key challenges in this field, which include the need for safe and effective tool manipulation, and the ability to adapt to unexpected changes in the luminal environment. To address these challenges, the thesis proposes several levels of autonomy that enable the robotic system to perform individual subtasks autonomously, while still allowing the surgeon to retain overall control of the procedure. The approach facilitates the development of specialized algorithms such as Deep Reinforcement Learning (DRL) for subtasks like navigation and tissue manipulation to produce robust surgical gestures. Additionally, the thesis proposes a safety framework that provides formal guarantees to prevent risky actions. The presented approaches are evaluated through a series of experiments using simulation and robotic platforms. The experiments demonstrate that subtask automation can improve the accuracy and efficiency of tool positioning and tissue manipulation, while also reducing the cognitive load on the surgeon. The results of this research have the potential to improve the reliability and safety of intraluminal surgical interventions, ultimately leading to better outcomes for patients and surgeons

    Learning-based depth and pose prediction for 3D scene reconstruction in endoscopy

    Get PDF
    Colorectal cancer is the third most common cancer worldwide. Early detection and treatment of pre-cancerous tissue during colonoscopy is critical to improving prognosis. However, navigating within the colon and inspecting the endoluminal tissue comprehensively are challenging, and success in both varies based on the endoscopist's skill and experience. Computer-assisted interventions in colonoscopy show much promise in improving navigation and inspection. For instance, 3D reconstruction of the colon during colonoscopy could promote more thorough examinations and increase adenoma detection rates which are associated with improved survival rates. Given the stakes, this thesis seeks to advance the state of research from feature-based traditional methods closer to a data-driven 3D reconstruction pipeline for colonoscopy. More specifically, this thesis explores different methods that improve subtasks of learning-based 3D reconstruction. The main tasks are depth prediction and camera pose estimation. As training data is unavailable, the author, together with her co-authors, proposes and publishes several synthetic datasets and promotes domain adaptation models to improve applicability to real data. We show, through extensive experiments, that our depth prediction methods produce more robust results than previous work. Our pose estimation network trained on our new synthetic data outperforms self-supervised methods on real sequences. Our box embeddings allow us to interpret the geometric relationship and scale difference between two images of the same surface without the need for feature matches that are often unobtainable in surgical scenes. Together, the methods introduced in this thesis help work towards a complete, data-driven 3D reconstruction pipeline for endoscopy

    Re-localisation of microscopic lesions in their macroscopic context for surgical instrument guidance

    Get PDF
    Optical biopsies interrogate microscopic structure in vivo with a 2mm diameter miniprobe placed in contact with the tissue for detection of lesions and assessment of disease progression. After detection, instruments are guided to the lesion location for a new optical interrogation, or for treatment, or for tissue excision during the same or a future examination. As the optical measurement can be considered as a point source of information at the surface of the tissue of interest, accurate guidance can be difficult. A method for re-localisation of the sampling point is, therefore, needed. The method presented in this thesis has been developed for biopsy site re-localisation during a surveillance examination of Barrett’s Oesophagus. The biopsy site, invisible macroscopically during conventional endoscopy, is re-localised in the target endoscopic image using epipolar lines derived from its locations given by the tip of the miniprobe visible in a series of reference endoscopic images. A confidence region can be drawn around the relocalised biopsy site from its uncertainty that is derived analytically. This thesis also presents a method to improve the accuracy of the epipolar lines derived for the biopsy site relocalisation using an electromagnetic tracking system. Simulations and tests on patient data identified the cases when the analytical uncertainty is a good approximation of the confidence region and showed that biopsy sites can be re-localised with accuracies better than 1mm. Studies on phantom and on porcine excised tissue demonstrated that an electromagnetic tracking system contributes to more accurate epipolar lines and re-localised biopsy sites for an endoscope displacement greater than 5mm. The re-localisation method can be applied to images acquired during different endoscopic examinations. It may also be useful for pulmonary applications. Finally, it can be combined with a Magnetic Resonance scanner which can steer cells to the biopsy site for tissue treatment
    corecore