72 research outputs found

    Exploring Defocus Matting: Nonparametric Acceleration, Super-Resolution, and Off-Center Matting

    Get PDF
    Defocus matting is a fully automatic and passive method for pulling mattes from video captured with coaxial cameras that have different depths of field and planes of focus. Nonparametric sampling can accelerate the video-matting process from minutes to seconds per frame. In addition, a super-resolution technique efficiently bridges the gap between mattes from high-resolution video cameras and those from low-resolution cameras. Off-center matting pulls mattes for an external high-resolution camera that doesn't share the same center of projection as the low-resolution cameras used to capture the defocus matting data.Engineering and Applied Science

    Highlighted depth-of-field photography: Shining light on focus

    Get PDF
    We present a photographic method to enhance intensity differences between objects at varying distances from the focal plane. By combining a unique capture procedure with simple image processing techniques, the detected brightness of an object is decreased proportional to its degree of defocus. A camera-projector system casts distinct grid patterns onto a scene to generate a spatial distribution of point reflections. These point reflections relay a relative measure of defocus that is utilized in postprocessing to generate a highlighted DOF photograph. Trade-offs between three different projectorprocessing pairs are analyzed, and a model is developed to help describe a new intensity-dependent depth of field that is controlled by the pattern of illumination. Results are presented for a primary single snapshot design as well as a scanning method and a comparison method. As an application, automatic matting results are presented.Alfred P. Sloan Foundatio

    Focusing on out-of-focus : assessing defocus estimation algorithms for the benefit of automated image masking

    Get PDF
    Acquiring photographs as input for an image-based modelling pipeline is less trivial than often assumed. Photographs should be correctly exposed, cover the subject sufficiently from all possible angles, have the required spatial resolution, be devoid of any motion blur, exhibit accurate focus and feature an adequate depth of field. The last four characteristics all determine the " sharpness " of an image and the photogrammetric, computer vision and hybrid photogrammetric computer vision communities all assume that the object to be modelled is depicted " acceptably " sharp throughout the whole image collection. Although none of these three fields has ever properly quantified " acceptably sharp " , it is more or less standard practice to mask those image portions that appear to be unsharp due to the limited depth of field around the plane of focus (whether this means blurry object parts or completely out-of-focus backgrounds). This paper will assess how well-or ill-suited defocus estimating algorithms are for automatically masking a series of photographs, since this could speed up modelling pipelines with many hundreds or thousands of photographs. To that end, the paper uses five different real-world datasets and compares the output of three state-of-the-art edge-based defocus estimators. Afterwards, critical comments and plans for the future finalise this paper

    Dr.Bokeh: DiffeRentiable Occlusion-aware Bokeh Rendering

    Full text link
    Bokeh is widely used in photography to draw attention to the subject while effectively isolating distractions in the background. Computational methods simulate bokeh effects without relying on a physical camera lens. However, in the realm of digital bokeh synthesis, the two main challenges for bokeh synthesis are color bleeding and partial occlusion at object boundaries. Our primary goal is to overcome these two major challenges using physics principles that define bokeh formation. To achieve this, we propose a novel and accurate filtering-based bokeh rendering equation and a physically-based occlusion-aware bokeh renderer, dubbed Dr.Bokeh, which addresses the aforementioned challenges during the rendering stage without the need of post-processing or data-driven approaches. Our rendering algorithm first preprocesses the input RGBD to obtain a layered scene representation. Dr.Bokeh then takes the layered representation and user-defined lens parameters to render photo-realistic lens blur. By softening non-differentiable operations, we make Dr.Bokeh differentiable such that it can be plugged into a machine-learning framework. We perform quantitative and qualitative evaluations on synthetic and real-world images to validate the effectiveness of the rendering quality and the differentiability of our method. We show Dr.Bokeh not only outperforms state-of-the-art bokeh rendering algorithms in terms of photo-realism but also improves the depth quality from depth-from-defocus

    The Video Mesh: A Data Structure for Image-based Three-dimensional Video Editing

    Get PDF
    This paper introduces the video mesh, a data structure for representing video as 2.5D “paper cutouts.” The video mesh allows interactive editing of moving objects and modeling of depth, which enables 3D effects and post-exposure camera control. The video mesh sparsely encodes optical flow as well as depth, and handles occlusion using local layering and alpha mattes. Motion is described by a sparse set of points tracked over time. Each point also stores a depth value. The video mesh is a triangulation over this point set and per-pixel information is obtained by interpolation. The user rotoscopes occluding contours and we introduce an algorithm to cut the video mesh along them. Object boundaries are refined with per-pixel alpha values. The video mesh is at its core a set of texture mapped triangles, we leverage graphics hardware to enable interactive editing and rendering of a variety of effects. We demonstrate the effectiveness of our representation with special effects such as 3D viewpoint changes, object insertion, depth-of-field manipulation, and 2D to 3D video conversion

    Light field image processing: an overview

    Get PDF
    Light field imaging has emerged as a technology allowing to capture richer visual information from our world. As opposed to traditional photography, which captures a 2D projection of the light in the scene integrating the angular domain, light fields collect radiance from rays in all directions, demultiplexing the angular information lost in conventional photography. On the one hand, this higher dimensional representation of visual data offers powerful capabilities for scene understanding, and substantially improves the performance of traditional computer vision problems such as depth sensing, post-capture refocusing, segmentation, video stabilization, material classification, etc. On the other hand, the high-dimensionality of light fields also brings up new challenges in terms of data capture, data compression, content editing, and display. Taking these two elements together, research in light field image processing has become increasingly popular in the computer vision, computer graphics, and signal processing communities. In this paper, we present a comprehensive overview and discussion of research in this field over the past 20 years. We focus on all aspects of light field image processing, including basic light field representation and theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for light field display, and computer vision applications of light field data
    corecore