1,476 research outputs found

    A Large-Scale Multilingual Disambiguation of Glosses

    Get PDF
    Linking concepts and named entities to knowledge bases has become a crucial Natural Language Understanding task. In this respect, recent works have shown the key advantage of exploiting textual definitions in various Natural Language Processing applications. However, to date there are no reliable large-scale corpora of sense-annotated textual definitions available to the research community. In this paper we present a large-scale high-quality corpus of disambiguated glosses in multiple languages, comprising sense annotations of both concepts and named entities from a unified sense inventory. Our approach for the construction and disambiguation of the corpus builds upon the structure of a large multilingual semantic network and a state-of-the-art disambiguation system; first, we gather complementary information of equivalent definitions across different languages to provide context for disambiguation, and then we combine it with a semantic similarity-based refinement. As a result we obtain a multilingual corpus of textual definitions featuring over 38 million definitions in 263 languages, and we make it freely available at http://lcl.uniroma1.it/disambiguated-glosses. Experiments on Open Information Extraction and Sense Clustering show how two state-of-the-art approaches improve their performance by integrating our disambiguated corpus into their pipeline

    All that glitters...: Interannotator agreement in natural language processing

    Get PDF
    Evaluation has emerged as a central concern in natural language processing (NLP) over the last few decades. Evaluation is done against a gold standard, a manually linguistically annotated dataset, which is assumed to provide the ground truth against which the accuracy of the NLP system can be assessed automatically. In this article, some methodological questions in connection with the creation of gold standard datasets are discussed, in particular (non-)expectations of linguistic expertise in annotators and the interannotator agreement measure standardly but unreflectedly used as a kind of quality index of NLP gold standards

    Semi-automated Ontology Generation for Biocuration and Semantic Search

    Get PDF
    Background: In the life sciences, the amount of literature and experimental data grows at a tremendous rate. In order to effectively access and integrate these data, biomedical ontologies – controlled, hierarchical vocabularies – are being developed. Creating and maintaining such ontologies is a difficult, labour-intensive, manual process. Many computational methods which can support ontology construction have been proposed in the past. However, good, validated systems are largely missing. Motivation: The biocuration community plays a central role in the development of ontologies. Any method that can support their efforts has the potential to have a huge impact in the life sciences. Recently, a number of semantic search engines were created that make use of biomedical ontologies for document retrieval. To transfer the technology to other knowledge domains, suitable ontologies need to be created. One area where ontologies may prove particularly useful is the search for alternative methods to animal testing, an area where comprehensive search is of special interest to determine the availability or unavailability of alternative methods. Results: The Dresden Ontology Generator for Directed Acyclic Graphs (DOG4DAG) developed in this thesis is a system which supports the creation and extension of ontologies by semi-automatically generating terms, definitions, and parent-child relations from text in PubMed, the web, and PDF repositories. The system is seamlessly integrated into OBO-Edit and Protégé, two widely used ontology editors in the life sciences. DOG4DAG generates terms by identifying statistically significant noun-phrases in text. For definitions and parent-child relations it employs pattern-based web searches. Each generation step has been systematically evaluated using manually validated benchmarks. The term generation leads to high quality terms also found in manually created ontologies. Definitions can be retrieved for up to 78% of terms, child ancestor relations for up to 54%. No other validated system exists that achieves comparable results. To improve the search for information on alternative methods to animal testing an ontology has been developed that contains 17,151 terms of which 10% were newly created and 90% were re-used from existing resources. This ontology is the core of Go3R, the first semantic search engine in this field. When a user performs a search query with Go3R, the search engine expands this request using the structure and terminology of the ontology. The machine classification employed in Go3R is capable of distinguishing documents related to alternative methods from those which are not with an F-measure of 90% on a manual benchmark. Approximately 200,000 of the 19 million documents listed in PubMed were identified as relevant, either because a specific term was contained or due to the automatic classification. The Go3R search engine is available on-line under www.Go3R.org

    SenseDefs : a multilingual corpus of semantically annotated textual definitions

    Get PDF
    Definitional knowledge has proved to be essential in various Natural Language Processing tasks and applications, especially when information at the level of word senses is exploited. However, the few sense-annotated corpora of textual definitions available to date are of limited size: this is mainly due to the expensive and time-consuming process of annotating a wide variety of word senses and entity mentions at a reasonably high scale. In this paper we present SenseDefs, a large-scale high-quality corpus of disambiguated definitions (or glosses) in multiple languages, comprising sense annotations of both concepts and named entities from a wide-coverage unified sense inventory. Our approach for the construction and disambiguation of this corpus builds upon the structure of a large multilingual semantic network and a state-of-the-art disambiguation system: first, we gather complementary information of equivalent definitions across different languages to provide context for disambiguation; then we refine the disambiguation output with a distributional approach based on semantic similarity. As a result, we obtain a multilingual corpus of textual definitions featuring over 38 million definitions in 263 languages, and we publicly release it to the research community. We assess the quality of SenseDefs’s sense annotations both intrinsically and extrinsically on Open Information Extraction and Sense Clustering tasks.Peer reviewe

    Semi-automated Ontology Generation for Biocuration and Semantic Search

    Get PDF
    Background: In the life sciences, the amount of literature and experimental data grows at a tremendous rate. In order to effectively access and integrate these data, biomedical ontologies – controlled, hierarchical vocabularies – are being developed. Creating and maintaining such ontologies is a difficult, labour-intensive, manual process. Many computational methods which can support ontology construction have been proposed in the past. However, good, validated systems are largely missing. Motivation: The biocuration community plays a central role in the development of ontologies. Any method that can support their efforts has the potential to have a huge impact in the life sciences. Recently, a number of semantic search engines were created that make use of biomedical ontologies for document retrieval. To transfer the technology to other knowledge domains, suitable ontologies need to be created. One area where ontologies may prove particularly useful is the search for alternative methods to animal testing, an area where comprehensive search is of special interest to determine the availability or unavailability of alternative methods. Results: The Dresden Ontology Generator for Directed Acyclic Graphs (DOG4DAG) developed in this thesis is a system which supports the creation and extension of ontologies by semi-automatically generating terms, definitions, and parent-child relations from text in PubMed, the web, and PDF repositories. The system is seamlessly integrated into OBO-Edit and Protégé, two widely used ontology editors in the life sciences. DOG4DAG generates terms by identifying statistically significant noun-phrases in text. For definitions and parent-child relations it employs pattern-based web searches. Each generation step has been systematically evaluated using manually validated benchmarks. The term generation leads to high quality terms also found in manually created ontologies. Definitions can be retrieved for up to 78% of terms, child ancestor relations for up to 54%. No other validated system exists that achieves comparable results. To improve the search for information on alternative methods to animal testing an ontology has been developed that contains 17,151 terms of which 10% were newly created and 90% were re-used from existing resources. This ontology is the core of Go3R, the first semantic search engine in this field. When a user performs a search query with Go3R, the search engine expands this request using the structure and terminology of the ontology. The machine classification employed in Go3R is capable of distinguishing documents related to alternative methods from those which are not with an F-measure of 90% on a manual benchmark. Approximately 200,000 of the 19 million documents listed in PubMed were identified as relevant, either because a specific term was contained or due to the automatic classification. The Go3R search engine is available on-line under www.Go3R.org

    Discovering Argumentative Patterns in Energy Polylogues: A Macroscope for Argument Mining

    Get PDF
    A macroscope is proposed and tested here for the discovery of the unique argumentative footprint that characterizes how a collective (e.g., group, online community) manages differences and pursues disagreement through argument in a polylogue. The macroscope addresses broader analytic problems posed by various conceptualizations of large-scale argument, such as fields, spheres, communities, and institutions. The design incorporates a two-tier methodology for detecting argument patterns of the arguments performed in arguing by an interactive collective that produces views, or topographies, of the ways that issues are generated in the making and defending of standpoints. The design premises for the macroscope build on insights about argument patterns from pragma-dialectical theory by incorporating research and theory on disagreement management and the Argumentum Model of Topics. The design reconceptualizes prototypical and stereotypical argument patterns for characterizing large-scale argumentation. A prototype of the macroscope is tested on data drawn from six threads about oil-drilling and fracking from the subreddit Changemyview. The implementation suggests the efficacy of the macroscope’s design and potential for identifying what communities make controversial and how the disagreement space in a polylogue is managed through stereotypical argument patterns in terms of claims/premises, inferential relations, and presentational devices

    Harnessing sense-level information for semantically augmented knowledge extraction

    Get PDF
    Nowadays, building accurate computational models for the semantics of language lies at the very core of Natural Language Processing and Artificial Intelligence. A first and foremost step in this respect consists in moving from word-based to sense-based approaches, in which operating explicitly at the level of word senses enables a model to produce more accurate and unambiguous results. At the same time, word senses create a bridge towards structured lexico-semantic resources, where the vast amount of available machine-readable information can help overcome the shortage of annotated data in many languages and domains of knowledge. This latter phenomenon, known as the knowledge acquisition bottlneck, is a crucial problem that hampers the development of large-scale, data-driven approaches for many Natural Language Processing tasks, especially when lexical semantics is directly involved. One of these tasks is Information Extraction, where an effective model has to cope with data sparsity, as well as with lexical ambiguity that can arise at the level of both arguments and relational phrases. Even in more recent Information Extraction approaches where semantics is implicitly modeled, these issues have not yet been addressed in their entirety. On the other hand, however, having access to explicit sense-level information is a very demanding task on its own, which can rarely be performed with high accuracy on a large scale. With this in mind, in ths thesis we will tackle a two-fold objective: our first focus will be on studying fully automatic approaches to obtain high-quality sense-level information from textual corpora; then, we will investigate in depth where and how such sense-level information has the potential to enhance the extraction of knowledge from open text. In the first part of this work, we will explore three different disambiguation scenar- ios (semi-structured text, parallel text, and definitional text) and devise automatic disambiguation strategies that are not only capable of scaling to different corpus sizes and different languages, but that actually take advantage of a multilingual and/or heterogeneous setting to improve and refine their performance. As a result, we will obtain three sense-annotated resources that, when tested experimentally with a baseline system in a series of downstream semantic tasks (i.e. Word Sense Disam- biguation, Entity Linking, Semantic Similarity), show very competitive performances on standard benchmarks against both manual and semi-automatic competitors. In the second part we will instead focus on Information Extraction, with an emphasis on Open Information Extraction (OIE), where issues like sparsity and lexical ambiguity are especially critical, and study how to exploit at best sense-level information within the extraction process. We will start by showing that enforcing a deeper semantic analysis in a definitional setting enables a full-fledged extraction pipeline to compete with state-of-the-art approaches based on much larger (but noisier) data. We will then demonstrate how working at the sense level at the end of an extraction pipeline is also beneficial: indeed, by leveraging sense-based techniques, very heterogeneous OIE-derived data can be aligned semantically, and unified with respect to a common sense inventory. Finally, we will briefly shift the focus to the more constrained setting of hypernym discovery, and study a sense-aware supervised framework for the task that is robust and effective, even when trained on heterogeneous OIE-derived hypernymic knowledge

    Introduction

    Get PDF

    Natural Language Generation as an Intelligent Activity (Proposal for Dissertation Research)

    Get PDF
    In this proposal, I outline a generator conceived of as part of a general intelligent agent. The generator\u27s task is to provide the overall system with the ability to use communication in language to serve its purposes, rather than to simply encode information in language. This requires that generation be viewed as a kind of goal-directed action that is planned and executed in a dynamically changing environment. In addition, the generator must not be dependent on domain or problem-specific information but rather on a general knowledge base .that it shares with the overall system. These requirements have specific consequences for the design of the generator and the representation it uses. In particular, the text planner and the low-level linguistic component must be able to interact and negotiate over decisions that involve both high-level and low-level constraints. Also, the knowledge representation must allow for the varying perspective that an intelligent agent will have on the things it talks about; the generator must be able to appropriately vary how it describes things as the system\u27s perspective on them changes. The generator described here will demonstrate how these ideas work in practice and develop them further
    • …
    corecore