3,573 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Mobile Identity Protection: The Moderation Role of Self-Efficacy

    Get PDF
    The rapid growth of mobile applications and the associated increased dependency on digital identity raises the growing risk of identity theft and related fraud. Hence, protecting identity in a mobile environment is a problem. This study develops a model that examines the role of identity protection self-efficacy in increasing users’ motivation intentions to achieve actual mobile identity protection. Our research found that self-efficacy significantly affects the relationship between users’ perceived threat appraisal and their motivational intentions for identity protection. The relation between mobile users’ protection, motivational intentions, and actual mobile identity protection actions was also found to be significant. Additionally, the findings revealed the considerable impact of awareness in fully mediating between self-efficacy and actual identity protection. The model and its hypotheses are empirically tested through a survey of 383 mobile users, and the findings are validated through a panel of experts, thus confirming the impact of self-efficacy on an individual’s identity protection in the mobile context

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Advanced glycation end products and age-related diseases in the general population

    Get PDF
    In this thesis, epidemiological, nutritional, and gut microbiome related studies are presented to illustrate the relation of advanced glycation end products (AGEs) with age-related diseases. The studies are embedded in the Rotterdam Study, a cohort of the Dutch general population of middle-aged and elderly adults. The amount of skin AGEs measured as SAF was used as a representative of the long-term AGE burden. Chapter 1 gives an overview of the whole thesis (Section 1.1) and gives a brief introduction to AGEs and their implications in disease pathophysiology. Chapter 2 focuses on the interplay of AGEs in the skin and clinical and lifestyle factors, and Chapter 3 concerns the link of skin and dietary AGEs with age-related diseases. Chapter 4 discusses the interpretations and implications of the findings, major methodological considerations, and pressing questions for future research

    Advanced glycation end products and age-related diseases in the general population

    Get PDF
    In this thesis, epidemiological, nutritional, and gut microbiome related studies are presented to illustrate the relation of advanced glycation end products (AGEs) with age-related diseases. The studies are embedded in the Rotterdam Study, a cohort of the Dutch general population of middle-aged and elderly adults. The amount of skin AGEs measured as SAF was used as a representative of the long-term AGE burden. Chapter 1 gives an overview of the whole thesis (Section 1.1) and gives a brief introduction to AGEs and their implications in disease pathophysiology. Chapter 2 focuses on the interplay of AGEs in the skin and clinical and lifestyle factors, and Chapter 3 concerns the link of skin and dietary AGEs with age-related diseases. Chapter 4 discusses the interpretations and implications of the findings, major methodological considerations, and pressing questions for future research

    Raman Spectroscopy Techniques for the Detection and Management of Breast Cancer

    Get PDF
    Breast cancer has recently become the most common cancer worldwide, and with increased incidence, there is increased pressure on health services to diagnose and treat many more patients. Mortality and survival rates for this particular disease are better than other cancer types, and part of this is due to the facilitation of early diagnosis provided by screening programmes, including the National Health Service breast screening programme in the UK. Despite the benefits of the programme, some patients undergo negative experiences in the form of false negative mammograms, overdiagnosis and subsequent overtreatment, and even a small number of cancers are induced by the use of ionising radiation. In addition to this, false positive mammograms cause a large number of unnecessary biopsies, which means significant costs, both financially and in terms of clinicians' time, and discourages patients from attending further screening. Improvement in areas of the treatment pathway is also needed. Surgery is usually the first line of treatment for early breast cancer, with breast conserving surgery being the preferred option compared to mastectomy. This type of operation achieves the same outcome as mastectomy - removal of the tumour - while allowing the patient to retain the majority of their normal breast tissue for improved aesthetic and psychological results. Yet, re-excision operations are often required when clear margins are not achieved, i.e. not all of the tumour is removed. This again has implications on cost and time, and increases the risk to the patient through additional surgery. Currently lacking in both the screening and surgical contexts is the ability to discern specific chemicals present in the breast tissue being assessed/removed. Specifically relevant to mammography is the presence of calcifications, the chemistry of which holds information indicative of pathology that cannot be accessed through x-rays. In addition, the chemical composition of breast tumour tissue has been shown to be different to normal tissue in a variety of ways, with one particular difference being a significant increase in water content. Raman spectroscopy is a rapid, non-ionising, non-destructive technique based on light scattering. It has been proven to discern between chemical types of calcification and subtleties within their spectra that indicate the malignancy status of the surrounding tissue, and differentiate between cancerous and normal breast tissue based on the relative water contents. Furthermore, this thesis presents work aimed at exploring deep Raman techniques to probe breast calcifications at depth within tissue, and using a high wavenumber Raman probe to discriminate tumour from normal tissue predominantly via changes in tissue water content. The ability of transmission Raman spectroscopy to detect different masses and distributions of calcified powder inclusions within tissue phantoms was tested, as well as elucidating a signal profile of a similar inclusion through a tissue phantom of clinically relevant thickness. The technique was then applied to the measurement of clinically active samples of bulk breast tissue from informed and consented patients to try to measure calcifications. Ex vivo specimens were also measured with a high wavenumber Raman probe, which found significant differences between tumour and normal tissue, largely due to water content, resulting in a classification model that achieved 77.1% sensitivity and 90.8% specificity. While calcifications were harder to detect in the ex vivo specimens, promising results were still achieved, potentially indicating a much more widespread influence of calcification in breast tissue, and to obtain useful signal from bulk human tissue is encouraging in itself. Consequently, this work demonstrates the potential value of both deep Raman techniques and high wavenumber Raman for future breast screening and tumour margin assessment methods

    Synthesis of multifunctional glyco-pseudodendrimers and glyco-dendrimers and their investigation as anti-Alzheimer agents

    Get PDF
    As the world population is aging, the cases of Alzheimer’s Disease (AD) are increasing. AD is a disorder of the brain which is characterized by the aggregation of amyloid beta (Aβ) plaques. This leads to the death of numerous brain cells thus affecting the cognitive and motor functions of the individual. Till date, no cure for the disease is available. Aβ are peptides with 40/42 amino acid residues but, their exact mechanism(s) of action in AD is under debate. Having different amino acid residues makes them susceptible to form hydrogen bonds. Dendrimers with sugar units are often referred to as glycopolymers and have been shown to have potential anti-amyloidogenic activity. However, they also have drawbacks, the synthesis involves multiple tedious steps, and dendrimers themselves offer only a limited number of functional units. Pseudodendrimers are another class of branched polymers based on hyperbranched polymers. Unlike the dendrimers, they are easy to synthesize with a dense shell of functional units on the surface. One of the main goals in this dissertation is the synthesis and characterization of pseudodendrimers and dendrimers based on 2,2-bis(hydroxymethyl)-propionic acid (bis-MPA), an aliphatic polyester scaffold, as it offers biocompatibility and easy degradability. Furthermore, they are decorated with mannose units on the surface using a ‘click’ reaction forming glyco-pseudodendrimers and glyco-dendrimers. A detailed characterization of their structures and physical properties was undertaken using techniques such as size exclusion chromatography, asymmetric flow field flow fractionation (AF4), and dynamic light scattering. The second main focus of this work has been to investigate the interaction of synthesized glyco-pseudodendrimers and glyco-dendrimers with Aβ 40 peptides. For this task, five different concentrations of the synthesized glycopolymers were tested with Aβ 40 using the Thioflavin T assay. The results of the synthesized polymers which produced the best results of showing maximum anti-aggregation behavior against Aβ 40 were confirmed with circular dichroism spectroscopy. AF4 was also used to investigate Aβ 40-glycopolymer aggregates, which has never been done before and constitutes the highlight of this dissertation. Atomic force microscopy was used to image Aβ 40-glycopseudodenrimer aggregates. A basic but important step in the development of drug delivery platforms is to evaluate the toxicity of the drugs synthesized. In this work, preliminary studies of the cytotoxicity of glyco-pseudodendrimers were performed in two different cell lines. Thus, this study comprises a preliminary investigation of the anti-amyloidogenic activity of glyco-pseudodendrimers synthesized on an aliphatic polyester backbone.:Abstract List of Tables List of Figures Abbreviations 1 Introduction 1.1 Objectives of the work 1.2 Thesis overview 2 Fundamentals and Literature 2.1 Alzheimer’s Disease and its impact 2.1.1 Neurological diagnosis of AD 2.1.2 Histopathology of AD 2.1.3 Amyloid precursor protein (APP) and its role in AD 2.2. Amyloid Beta (Aβ) peptide 2.2.1 Aβ peptide 2.2.2. Location and function 2.2.3 Amyloid hypothesis 2.2.4 The mechanism of Aβ aggregation 2.2.5 Amyloid fibrils 2.2.6 Toxicity of Aβ 2.3 Research methods to study Aβ aggregates 2.3.1 Models to study the mode of action of aggregates 2.3.2 Endogenous Aβ aggregates and synthetic aggregates 2.3.3 Strategies to alter aggregation of amyloids 2.4 Treatment and therapeutics 2.4.1 Current therapeutics 2.4.2 Current therapeutic research 2.4.2.1 Reduction of Aβ production 2.4.2.2 Reduction of Aβ plaque accumulation 2.4.2.2.1 Anti-amyloid aggregation agents 2.4.2.2.2 Metals 2.4.2.2.3 Immunotherapy 2.4.2.2.4 Dendrimers as potential anti-amyloidogenic agent 2.6 Dendrimers 2.6.1 Definition 2.6.2 Structure Table of Contents 2.6.3 Synthesis 2.6.4 Properties 2.7 Pseudodendrimers - a sub-class of hyperbranched polymer 2.7.1 Definition 2.7.2 Structure 2.7.3 Synthesis 3 Analytical Techniques 3.1 Size Exclusion Chromatography Coupled to Light Scattering (SEC-MALS) 3.2 Asymmetric Flow Field Flow Fractionation (AF4) 3.3 Dynamic Light Scattering 3.4 Molecular Dynamics Simulation 3.5 Nuclear Magnetic Resonance Spectroscopy 3.6 Thioflavin T fluorescence 3.6.1 Kinetic analysis 3.7 Circular Dichroism Spectroscopy 3.8 Atomic Force Microscopy 3.9 Cytotoxic assay 3.9.1 MTT assay 3.9.2 Determining the level of reactive oxygen species 3.9.3 Changes in mitochondrial transmembrane potential 3.9.4 Flow cytometric detection of phosphatidyl serine exposure 4 Experimental Details and Methodology 4.1 Details of chemicals/components used 4.1.1 Other materials 4.1.2 Peptide preparation 4.1.3 Buffer preparation 4.1.4 Fibril growth conditions 4.2 Synthesis and characterization of polymers 4.2.1 Synthesis and characterization of pseudodendrimers and dendrimers 4.2.1.1 Synthesis of hyperbranched polymer (1) 4.2.1.2 Synthesis of protected monomer 4.2.1.2.1 bis-MPA acetonide (2) 4.2.1.2.2 bis-MPA-acetonide anhydride (3) 4.2.1.3 Synthesis of protected pseudodendrimers (4, 6 and 8) and protected dendrimers (10, 12, and 14) 4.2.1.4 Deprotection of pseudodendrimers (5,7, and 9) and dendrimers (11,13 and 15) 4.2.2 Synthesis of glyco-pseudodendrimers and glyco-dendrimers 4.2.2.1 Pentynoic anhydride (16) 4.2.2.2 Synthesis of pentinate modified pseudodendrimers (17, 18 and 19) and dendrimers (20, 21 and 22) 4.2.2.3 3-Azido-1-propanol (23) 4.2.2.4 Mannose propyl azide tetraacetate (24) Table of Contents 4.2.2.5 Mannosepropylazide (25) 4.2.2.6 Glyco-pseudodendrimers (Gl-P) (26, 27 and 28) and glyco- dendrimers (Gl-D) (29, 30 and 31) 4.3 Analytical techniques and their general details 4.3.1 SEC-MALS - Instrumentation, software and analysis 4.3.2 AF4 - Instrumentation, software and analysis 4.3.2.1 Sample preparation 4.3.2.2 Method development for analysis of Gl-P and Gl-D 4.3.2.3 Method development for analysis of Aβ 40 and its interaction with Gl-P and Gl-D 4.3.3 Batch DLS - Instrumentation, software and analysis 4.3.3.1 Sample preparation 4.3.4 Theoretical calculations and molecular dynamics simulations 4.3.4.1 Ab-initio calculations 4.3.4.2 Modelling of the polymer structures 4.3.4.2.1 Pseudodendrimers 4.3.4.2.2 Dendrimers 4.3.4.2.3 Modification of the polymers with special end groups 4.3.4.2.4 Preparing of the THF solvent box 4.3.4.2.5 Solvation of the polymer structures 4.3.4.3 Molecular dynamics simulations 4.3.4.3.1 Evaluation of the simulation trajectories 4.4 Investigation of interaction of Gl-P and Gl-D with amyloid beta (Aβ 40) 4.4.1 ThT Assay - Instrumentation and software 4.4.1.1 Sample preparation 4.4.1.2 Kinetics based on ThT assay- software and data analysis 4.4.2 CD spectroscopy - Instrumentation and software 4.4.2.1 Sample preparation 4.4.3 AFM - Instrumentation and software 4.4.3.1 Substrate and sample preparation 4.4.3.2 Height determination and counting procedures 4.4.3.3 Topography and diameter 4.5 Cytotoxicity 4.5.1 Zeta potential 4.5.2 Cell culturing 4.5.3 Sample preparation 4.5.4 MTT assay 4.5.5 Changes in mitochondrial transmembrane potential (JC-1 method) 4.5.6 Flow cytometric detection of phosphatidyl serine exposure (Annexin V and PI method) 5 Results and Discussion 5.1 Synthesis and characterization of glyco-pseudodendrimers and glyco- dendrimers 5.1.1 Synthesis and characterization of hyperbranched polyester Table of Contents 5.1.2 Synthesis and characterization of pseudodendrimers P-G1-OH, P-G2-OH and P-G3-OH 5.1.3 Synthesis and characterization of dendrimers D-G4-OH, D-G5-OH and D-G6-OH 5.1.4 Synthesis and characterization of Gl-P and Gl-D 5.1.4.1 Molecular size determination of Gl-P and Gl-D using SEC 5.1.4.2 Particle size determination using batch DLS 5.1.4.3 Apparent densities 5.1.4.4 Molecular size determination of Gl-P and Gl-D using AF4 ..... 5.1.5 Molecular dynamics simulation 5.2 Investigation of interaction of Gl-P and Gl-D with amyloid beta (Aβ 40) ...... 5.2.1 ThT Assay 5.2.1.1 Kinetics based on ThT assay 5.2.2 CD spectroscopy 5.2.3 Time dependent AF4 5.3.2.1 Separation of Aβ 40 by AF4 5.3.2.2 Aβ 40 amyloid aggregation in the presence of Gl-P and Gl-D 5.2.4 AFM 5.2.4.1 Height 5.2.4.2 Topography and diameter 5.2.4.3 Length 5.2.4.4 Morphology 5.2.5 Cytotoxicity 5.2.5.1 MTT assay 5.2.5.2 Changes in mitochondrial transmembrane potential 5.2.5.3 Flow cytometric detection of phosphatidyl serine exposure 6 Conclusions and Outlook 7 Bibliography Appendix Acknowledgement

    High-performance shape memory composites with intrinsic heating capabilities

    Get PDF
    Shape morphing structures have played a significant role within the field of aerospace for more than a century. While the shape morphing aerostructures of the past and present have depended on hinges and motors to achieve morphing, their future is expected to rely on smart materials and structures that have intrinsic shape morphing capabilities. One such smart material, that has previously been developed at Imperial College London, is the carbon fibre reinforced epoxy polymer (CFRP) composite with thermoplastic (TP) interleaves. These interleaved composites exhibit controllable stiffness (CS) and shape memory (SM) capabilities under suitable thermal conditions. While these interleaved composites showed excellent shape morphing capabilities, they had several drawbacks. These composites showed poor flexural modulus and through-thickness shear strength compared to the epoxy-based non-interleaved CFRP. These composites also used an oven to achieve the high temperatures required to exhibit the CS and SM capabilities. This thesis describes studies conducted to mitigate these drawbacks. In the first study described in this thesis, the source of the premature through-thickness shear failure in TP interleaved CFRP composites was discovered to be the low shear strength of the polystyrene (PS) interleaves used in previous works. It was then demonstrated that replacing PS with Poly(styrene-co-acrylonitrile) (SAN) could improve the through-thickness shear strength of the interleaved composites to be almost as high as that of pristine CFRP. Furthermore, the SAN-interleaved CFRP laminates also exhibited excellent CS and SM capabilities. In the next study described in this thesis, it was demonstrated that the flexural modulus of TP interleaved CFRP composites can be substantially improved by two different methods- (i) reducing the thickness of the TP interleaves, and (ii) introducing reinforcements within the TP interleaves. The following study describes how intrinsic heating capability was achieved in TP interleaved CFRP composites, through resistive heating of heater elements such as stainless steel (SS) meshes and woven carbon fabric (WCF) embedded within the layup of the composite. This intrinsic heating strategy was used to supply the temperature necessary for the corresponding composites to exhibit CS and SM capabilities. As a result, these intrinsically heated TP interleaved CFRP composites exhibited successful out-of-oven morphing capabilities. In the final study described in this thesis, composite structures that were initially flat in their as-cured state, but were capable of deployment into planar and curved meshes were designed. Finite element numerical models were used to predict the deployment capabilities of these composite structures. Finally, the deployable composite mesh structures were manufactured and characterised.Open Acces

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium
    • …
    corecore