55 research outputs found

    Elliptical Monogenic Wavelets for the analysis and processing of color images

    No full text
    International audienceThis paper studies and gives new algorithms for image processing based on monogenic wavelets. Existing greyscale monogenic filterbanks are reviewed and we reveal a lack of discussion about the synthesis part. The monogenic synthesis is therefore defined from the idea of wavelet modulation, and an innovative filterbank is constructed by using the Radon transform. The color extension is then investigated. First, the elliptical Fourier atom model is proposed to generalize theanalytic signal representation for vector-valued signals. Then a color Riesz-transform is defined so as to construct color elliptical monogenic wavelets. Our Radon-based monogenic filterbank can be easily extended to color according to this definition. The proposed wavelet representation provides efficient analysis of local features in terms of shape and color, thanks to the concepts of amplitude, phase, orientation, and ellipse parameters. The synthesis from local features is deeply studied. We conclude the article by defining the color local frequency, proposing an estimation algorithm

    Vector extension of monogenic wavelets for geometric representation of color images

    No full text
    14 pagesInternational audienceMonogenic wavelets offer a geometric representation of grayscale images through an AM/FM model allowing invariance of coefficients to translations and rotations. The underlying concept of local phase includes a fine contour analysis into a coherent unified framework. Starting from a link with structure tensors, we propose a non-trivial extension of the monogenic framework to vector-valued signals to carry out a non marginal color monogenic wavelet transform. We also give a practical study of this new wavelet transform in the contexts of sparse representations and invariant analysis, which helps to understand the physical interpretation of coefficients and validates the interest of our theoretical construction

    Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen : 04. bis 06.07. 2012, Bauhaus-Universität Weimar

    Get PDF
    The 19th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 4th till 6th July 2012. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference

    On the Analysis and Decomposition of Intrinsically One-Dimensional Signals and their Superpositions

    Get PDF
    Computer and machine vision tasks can roughly be divided into a hierarchy of processing steps applied to input signals captured by a measuring device. In the case of image signals, the first stage in this hierarchy is also referred to as low-level vision or low-level image processing. The field of low-level image processing includes the mathematical description of signals in terms of certain local signal models. The choice of the signal model is often task dependent. A common task is the extraction of features from the signal. Since signals are subject to transformations, for example camera movements in the case of image signals, the features are supposed to fulfill the properties of invariance or equivariance with respect to these transformations. The chosen signal model should reflect these properties in terms of its parameters. This thesis contributes to the field of low-level vision. Local signal structures are represented by (sinusoidal) intrinsically one-dimensional signals and their superpositions. Each intrinsically one-dimensional signal consists of certain parameters such as orientation, amplitude, frequency and phase. If the affine group acts on these signals, the transformations induce a corresponding action in the parameter space of the signal model. Hence, it is reasonable, to estimate the model parameters in order to describe the invariant and equivariant features. The first and main contribution studies superpositions of intrinsically one-dimensional signals in the plane. The parameters of the signal are supposed to be extracted from the responses of linear shift invariant operators: the generalized Hilbert transform (Riesz transform) and its higher-order versions and the partial derivative operators. While well known signal representations, such as the monogenic signal, allow to obtain the local features amplitude, phase and orientation for a single intrinsically one-dimensional signal, there exists no general method to decompose superpositions of such signals into their corresponding features. A novel method for the decomposition of an arbitrary number of sinusoidal intrinsically one-dimensional signals in the plane is proposed. The responses of the higher-order generalized Hilbert transforms in the plane are interpreted as symmetric tensors, which allow to restate the decomposition problem as a symmetric tensor decomposition. Algorithms, examples and applications for the novel decomposition are provided. The second contribution studies curved intrinsically one-dimensional signals in the plane. This signal model introduces a new parameter, the curvature, and allows the representation of curved signal structures. Using the inverse stereographic projection to the sphere, these curved signals are locally identified with intrinsically one-dimensional signals in the three-dimensional Euclidean space and analyzed in terms of the generalized Hilbert transform and partial derivatives therein. The third contribution studies the generalized Hilbert transform in a non-Euclidean space, the two-sphere. The mathematical framework of Clifford analysis proposes a further generalization of the generalized Hilbert transform to the two-sphere in terms of the corresponding Cauchy kernel. Nonetheless, this transform lacks an intuitive interpretation in the frequency domain. A decomposition of the Cauchy kernel in terms of its spherical harmonics is provided. Its coefficients not only provide insights to the generalized Hilbert transform on the sphere, but also allow for fast implementations in terms of analogues of the convolution theorem on the sphere

    Visualization and Analysis of Flow Fields based on Clifford Convolution

    Get PDF
    Vector fields from flow visualization often containmillions of data values. It is obvious that a direct inspection of the data by the user is tedious. Therefore, an automated approach for the preselection of features is essential for a complete analysis of nontrivial flow fields. This thesis deals with automated detection, analysis, and visualization of flow features in vector fields based on techniques transfered from image processing. This work is build on rotation invariant template matching with Clifford convolution as developed in the diploma thesis of the author. A detailed analysis of the possibilities of this approach is done, and further techniques and algorithms up to a complete segmentation of vector fields are developed in the process. One of the major contributions thereby is the definition of a Clifford Fourier transform in 2D and 3D, and the proof of a corresponding convolution theorem for the Clifford convolution as well as other major theorems. This Clifford Fourier transform allows a frequency analysis of vector fields and the behavior of vectorvalued filters, as well as an acceleration of the convolution computation as a fast transform exists. The depth and precision of flow field analysis based on template matching and Clifford convolution is studied in detail for a specific application, which are flow fields measured in the wake of a helicopter rotor. Determining the features and their parameters in this data is an important step for a better understanding of the observed flow. Specific techniques dealing with subpixel accuracy and the parameters to be determined are developed on the way. To regard the flow as a superposition of simpler features is a necessity for this application as close vortices influence each other. Convolution is a linear system, so it is suited for this kind of analysis. The suitability of other flow analysis and visualization methods for this task is studied here as well. The knowledge and techniques developed for this work are brought together in the end to compute and visualize feature based segmentations of flow fields. The resulting visualizations display important structures of the flow and highlight the interesting features. Thus, a major step towards robust and automatic detection, analysis and visualization of flow fields is taken
    corecore