201,131 research outputs found

    Reconstruction of Directed Networks from Consensus Dynamics

    Full text link
    This paper addresses the problem of identifying the topology of an unknown, weighted, directed network running a consensus dynamics. We propose a methodology to reconstruct the network topology from the dynamic response when the system is stimulated by a wide-sense stationary noise of unknown power spectral density. The method is based on a node-knockout, or grounding, procedure wherein the grounded node broadcasts zero without being eliminated from the network. In this direction, we measure the empirical cross-power spectral densities of the outputs between every pair of nodes for both grounded and ungrounded consensus to reconstruct the unknown topology of the network. We also establish that in the special cases of undirected or purely unidirectional networks, the reconstruction does not need grounding. Finally, we extend our results to the case of a directed network assuming a general dynamics, and prove that the developed method can detect edges and their direction.Comment: 6 page

    Distances for Weighted Transition Systems: Games and Properties

    Get PDF
    We develop a general framework for reasoning about distances between transition systems with quantitative information. Taking as starting point an arbitrary distance on system traces, we show how this leads to natural definitions of a linear and a branching distance on states of such a transition system. We show that our framework generalizes and unifies a large variety of previously considered system distances, and we develop some general properties of our distances. We also show that if the trace distance admits a recursive characterization, then the corresponding branching distance can be obtained as a least fixed point to a similar recursive characterization. The central tool in our work is a theory of infinite path-building games with quantitative objectives.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    On Submodularity and Controllability in Complex Dynamical Networks

    Full text link
    Controllability and observability have long been recognized as fundamental structural properties of dynamical systems, but have recently seen renewed interest in the context of large, complex networks of dynamical systems. A basic problem is sensor and actuator placement: choose a subset from a finite set of possible placements to optimize some real-valued controllability and observability metrics of the network. Surprisingly little is known about the structure of such combinatorial optimization problems. In this paper, we show that several important classes of metrics based on the controllability and observability Gramians have a strong structural property that allows for either efficient global optimization or an approximation guarantee by using a simple greedy heuristic for their maximization. In particular, the mapping from possible placements to several scalar functions of the associated Gramian is either a modular or submodular set function. The results are illustrated on randomly generated systems and on a problem of power electronic actuator placement in a model of the European power grid.Comment: Original arXiv version of IEEE Transactions on Control of Network Systems paper (Volume 3, Issue 1), with a addendum (located in the ancillary documents) that explains an error in a proof of the original paper and provides a counterexample to the corresponding resul
    • …
    corecore