93 research outputs found

    Resource management for multimedia traffic over ATM broadband satellite networks

    Get PDF
    PhDAbstract not availabl

    Satellite Networks: Architectures, Applications, and Technologies

    Get PDF
    Since global satellite networks are moving to the forefront in enhancing the national and global information infrastructures due to communication satellites' unique networking characteristics, a workshop was organized to assess the progress made to date and chart the future. This workshop provided the forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. Presentations on overview, state-of-the-art in research, development, deployment and applications and future trends on satellite networks are assembled

    Methods of Congestion Control for Adaptive Continuous Media

    Get PDF
    Since the first exchange of data between machines in different locations in early 1960s, computer networks have grown exponentially with millions of people now using the Internet. With this, there has also been a rapid increase in different kinds of services offered over the World Wide Web from simple e-mails to streaming video. It is generally accepted that the commonly used protocol suite TCP/IP alone is not adequate for a number of modern applications with high bandwidth and minimal delay requirements. Many technologies are emerging such as IPv6, Diffserv, Intserv etc, which aim to replace the onesize-fits-all approach of the current lPv4. There is a consensus that the networks will have to be capable of multi-service and will have to isolate different classes of traffic through bandwidth partitioning such that, for example, low priority best-effort traffic does not cause delay for high priority video traffic. However, this research identifies that even within a class there may be delays or losses due to congestion and the problem will require different solutions in different classes. The focus of this research is on the requirements of the adaptive continuous media class. These are traffic flows that require a good Quality of Service but are also able to adapt to the network conditions by accepting some degradation in quality. It is potentially the most flexible traffic class and therefore, one of the most useful types for an increasing number of applications. This thesis discusses the QoS requirements of adaptive continuous media and identifies an ideal feedback based control system that would be suitable for this class. A number of current methods of congestion control have been investigated and two methods that have been shown to be successful with data traffic have been evaluated to ascertain if they could be adapted for adaptive continuous media. A novel method of control based on percentile monitoring of the queue occupancy is then proposed and developed. Simulation results demonstrate that the percentile monitoring based method is more appropriate to this type of flow. The problem of congestion control at aggregating nodes of the network hierarchy, where thousands of adaptive flows may be aggregated to a single flow, is then considered. A unique method of pricing mean and variance is developed such that each individual flow is charged fairly for its contribution to the congestion

    Resource allocation and congestion control strategies for networked unmanned systems

    Get PDF
    It is generally agreed that communication is a critical technological factor in designing networked unmanned systems (NUS) that consist of a large number of heterogeneous assets/nodes that may be configured in ad-hoc fashion and that incorporate intricate architectures. In order to successfully carry out the NUS missions, communication among assets need to be accomplished efficiently. In contrast with conventional networks, NUSs have specific features that may render communication more complex. The main distinct characteristics of NUS are as follows: (a) heterogeneity of assets in terms of resources, (b) multiple topologies that can be fully-connected, (c) real-time requirements imposed by delivery timeliness of messages under evolving and uncertain environments, (d) unknown and random time-delays that may degrade the closed-loop dynamics performance, (e) bandwidth constraints reflecting differences in assets behavior and dynamics, and (f) protocol limitations for complying with the wireless features of these networks. The NUS system consists of clusters each having three nodes, namely, a sensor, a decision-maker, and an actuator. Inspired by networked control systems (NCS), we introduced a generic framework for NUSs. Using the fluid flow model (FFM), the overall dynamical model of our network cluster is derived as a time-delay dependent system. The following three main issues are investigated in this thesis, bandwidth allocation, an integrated bandwidth allocation and flow rate control, and congestion control. To demonstrate the difficulty of addressing the bandwidth allocation control problem, a standard PID is implemented for our network cluster. It is shown that in presence of feedback loops and time-delays in the network, this controller induces flow oscillations and consequently, in the worst-case scenario, network instability. To address this problem, nonlinear control strategies are proposed instead. These strategies are evaluated subject to presence of unknown delays and measurable/estimated input traffic. For different network configurations, the error dynamics of the entire controlled cluster is derived and sufficient stability conditions are obtained. In addition, our proposed bandwidth allocation control strategy is evaluated when the NUS assets are assumed to be mobile. The bandwidth allocation problem is often studied in an integrated fashion with the flow rate control and the connection admission control (CAC). In fact, due to importance of interaction of various components, design of the entire control system is often more promising than optimization of individual components. In this thesis, several robust integrated bandwidth allocation and flow rate control strategies are proposed. The third issue that is investigated in this thesis is the congestion control for differentiated-services (DiffServ) networks. In our proposed congestion control strategies, the buffer queue length is used as a feedback information to control locally the queue length of each buffer by acting on the bandwidth and simultaneously a feedback signaling notifies the ordinary sources regarding the allowed maximum rate. Using sliding mode generalized variable structure control techniques (SM-GVSC), two congestion control approaches are proposed, namely, the non degenerate and degenerate GVS control approaches. By adopting decentralized end-to-end, semi-decentralized end-to-end, and distributed hop-by-hop control approaches, our proposed congestion control strategies are investigated for a DiffServ loopless mesh network (Internet) and a DiffServ fully-connected NUS. Contrary to the semi-decentralized end-to-end congestion control strategy, in the distributed hop-by-hop congestion control strategy, each output port controller communicates the maximum allowed flow rate only to its immediate upstream node(s) and/or source(s). This approach reduces the required amount of information in the flow control when Compared to other approaches in which the allowed flow rate is sent to all the upstream sources communicating through an output port

    Bandwidth scheduling and its application in ATM networks

    Get PDF

    Quality of service over ATM networks

    Get PDF
    PhDAbstract not availabl

    Integrating LEO Satellite Constellations into Internet Backbone

    Get PDF
    Low Earth Orbit (LEO) satellite constellations have been used for ubiquitous and flexible Internet access services. However, a number of problems related to the integration of terrestrial with satellite hosts should be resolved for the effective exploitation of LEO constellations. LEO constellations are different from terrestrial Internet because of its special properties, which result in a lot of problems. A key issue is how to route Internet packets to the LEO constellation. In the thesis (1) the background of LEO constellations was introduced; (2) the obstacles of routing between the satellites and Internet were outlined; (3) The particular problem, which must be solved, is the routing burst stream traffic in LEO satellite constellations. Two novel routing algorithmsCControl Route Transmission (CRT) and CRT with bandwidth allocation (BCRT)Cwere utilized to address the bursts routing problem. CRT is an adaptive protocol which is able to minimize the congestion in the constellations. BCRT is a CRT extension which is allowed to class the traffic (e.g. video) with different QoS requirements and guarantees. Both of CRT and BCRT work in time epochs. Routes are computed on the basis of a directed weighted graph representing the global traffic traveling in the constellations. Both CRT and BCRT were evaluated via simulation and compared with other proposals in the literatures. The results showed that CRT is a simple algorithm, but the strategy produced by CRT could avoid the congestion and enhance the global resource usage in different traffic conditions. Moreover, the explicit reservation and reroute of BCRT greatly improve the performance of CRT. In particular, the dropping rate of BCRT is very low and the average delivery time is comparable with other proposals in the literatures.Low Earth Orbit (LEO) satellite constellations have been used for ubiquitous and flexible Internet access services. However, a number of problems related to the integration of terrestrial with satellite hosts should be resolved for the effective exploitation of LEO constellations. LEO constellations are different from terrestrial Internet because of its special properties, which result in a lot of problems. A key issue is how to route Internet packets to the LEO constellation. In the thesis (1) the background of LEO constellations was introduced; (2) the obstacles of routing between the satellites and Internet were outlined; (3) The particular problem, which must be solved, is the routing burst stream traffic in LEO satellite constellations. Two novel routing algorithmsCControl Route Transmission (CRT) and CRT with bandwidth allocation (BCRT)Cwere utilized to address the bursts routing problem. CRT is an adaptive protocol which is able to minimize the congestion in the constellations. BCRT is a CRT extension which is allowed to class the traffic (e.g. video) with different QoS requirements and guarantees. Both of CRT and BCRT work in time epochs. Routes are computed on the basis of a directed weighted graph representing the global traffic traveling in the constellations. Both CRT and BCRT were evaluated via simulation and compared with other proposals in the literatures. The results showed that CRT is a simple algorithm, but the strategy produced by CRT could avoid the congestion and enhance the global resource usage in different traffic conditions. Moreover, the explicit reservation and reroute of BCRT greatly improve the performance of CRT. In particular, the dropping rate of BCRT is very low and the average delivery time is comparable with other proposals in the literatures

    Resource allocation in ATM networks

    Get PDF
    The areas of resource allocation ancl congestion control in ATM networks have been investigated. ATM networks and the guarantees given to users have been reviewed and a new model of ATM networking has been proposed. To aid the analysis of ATM network issues, performance modelling and simulation methods have been reviewed. Typical sources have been designed : a two-state Markov model for voice ; a multi-state Markov one layer variable bit rate video source model ; an empirical file transfer data source model ; and some basic network elements. The models have been verified and validated on a discrete event simulator. It was shown that there are problems when using ATM over satellite links. A model for the noise analysed from real satellite links was developed. Based on this model a new more efficient protocol for assembling ATM cells was proposed and simulated. Again at the cell level, the traffic that can pass the standardised conformance test and still produce the worst performance in the network was investigated. Counter to the traditional wisdom it was found that the on-off source does not always produce the worst case traffic. Users have been classified with new parameters, and it has been shown that these new classes of users can still be given guarantees without giving traffic descriptors. Adaptive user classes have been modelled mathematically. A new model for efficiency has been developed, which includes both network issues and economic issues. This new model defines congestion and also describes how to allocate resources when congested. It has been shown that this economic model coupled with the adaptive user classes allow for an increase in both network and economic efficiency simultaneously for some sample cases

    Preliminary study of cooperation in hybrid ad-hoc networks

    Get PDF
    In this paper, we present a first approach to evolve a cooperative behavior in ad hoc networks. Since wireless nodes are energy constrained, it may not be in the best interest of a node to always accept relay requests. On the other hand, if all nodes decide not to expend energy in relaying, then network throughput will drop dramatically. Both these extreme scenarios are unfavorable to the interests of a user. In this paper we deal with the issue of user cooperation in ad hoc networks by developing the algorithm called Generous Tit-For-Tat. We assume that nodes are rational, i.e., their actions are strictly determined by self-interest, and that each node is associated with a minimum lifetime constraint. Given these lifetime constraints and the assumption of rational behavior, we study the added behavior of the network.En este proyecto mostramos un primer acercamiento a la evolución de las redes Ad-Hoc cooperativas. Puesto que los nodos wireless disponen de energía finita, puede que no estén interesados en aceptar transmitir tráfico de otros nodos. Por otra parte, si ningún nodo decide gastar energía en retransmitir tráfico de otros, entonces la tasa de transferencia en la red cae críticamente. Estos casos extremos son desfavorables para el usuario. En este trabajo tratamos estas cuestiones gracias al desarrollo de un algoritmo llamado "Generous Tit-For Tat". Asumiremos que los nodos son egoístas y tienen energía finita, así que las decisiones se determinarán por propio interés y cada nodo será asociado con un tiempo limitado de energía. Dadas esas limitaciones y la suposición del comportamiento racional estudiaremos el comportamiento agregado de la red.En aquest treball mostrem una primera aproximació a l'evolució de les xarxes Ad-Hoc cooperatives. Donat que els nodes wireless disposen d'energia finita, poden no estar interessats en transmetre tràfic d'altres nodes. Per altra banda, si cap node decideix gastar energia en passar tràfic d'altres, llavors la tassa de transferència a la xarxa cau críticament. Aquests casos extrems son desfavorables per l'usuari. En aquest treball tractem aquestes qüestions gràcies al desenvolupament d'un algoritme anomenat "Generous Tit-For-Tat". Assumirem que els nodes son egoistes y tenen energia finita, així que les decisions es determinaran pel seu propi interès i cada node s'associarà amb un temps limitat d'energia. Donades aquestes limitacions y la suposició del comportament racional, estudiarem el comportament agregat de la xarxa.Nota: Aquest document conté originàriament altre material i/o programari només consultable a la Biblioteca de Ciència i Tecnologia
    corecore