32,081 research outputs found

    Real time integration of user preferences into virtual prototypes

    Get PDF
    Within new product development (NPD), both virtual prototypes and physical prototypes play important roles in creating, testing and modifying designs. However, in the current design process, these two forms of prototyping methods are normally used independently and converted from one to the other during different design phases. This conversion process is time consuming and expensive and also introduces potential information loss/corruption problems. If the design process requires many iterations, it may simply be impractical to generate all the conversions that are theoretically required. Therefore, the integration of virtual and physical prototyping may offer a possible solution where the design definition is maintained simultaneously in both the virtual and physical environment. The overall aim of this research was to develop an interface or a tool that achieves real time integration of physical and virtual prototyping. “Real time integration” here means changes to the virtual prototypes will reflect any changes that have been made contemporaneously to the physical prototypes, and vice versa. Thus, conversion of the prototype from physical to virtual (or vice versa) will be achieved immediately, hence saving time and cost. A review of the literature was undertaken to determine what previous research has been conducted in this area. The result of the review shows the research in this area is still in its infancy. The research hypothesis was developed through the use of a questionnaire survey. Totally 102 questionnaires were sent to designers, design directors or design managers to address the issue: will industrial designers want to make use of real time integration and if so, how? The outcome from the literature review drove further development of the research hypothesis and an initial pilot experiment to test this. The pilot trial was designed to address the research questions: ‱ Can real time physical and virtual prototyping integration be conveniently demonstrated? ‱ Will designers and users be comfortable using the integration method? ‱ Will users recognise the benefits of the integration? The results showed that real time integration between physical and virtual prototyping is necessary in helping designers develop new products and for getting users more closely involved. The future research suggested is that more investigations and experiments are needed to explore a proper method that simultaneously employing these two types of prototyping in product development process. Keywords: Physical Prototyping; Virtual Prototyping; Integration; Real Time.</p

    Survey on Additive Manufacturing, Cloud 3D Printing and Services

    Full text link
    Cloud Manufacturing (CM) is the concept of using manufacturing resources in a service oriented way over the Internet. Recent developments in Additive Manufacturing (AM) are making it possible to utilise resources ad-hoc as replacement for traditional manufacturing resources in case of spontaneous problems in the established manufacturing processes. In order to be of use in these scenarios the AM resources must adhere to a strict principle of transparency and service composition in adherence to the Cloud Computing (CC) paradigm. With this review we provide an overview over CM, AM and relevant domains as well as present the historical development of scientific research in these fields, starting from 2002. Part of this work is also a meta-review on the domain to further detail its development and structure

    Study on an integrated system of rapid prototyping and manufacturing for 3D Digitizer to CNC Mill : a thesis presented in partial fulfilment of the requirements for the degree of Master in Technology at Massey University, Palmerston North, New Zealand

    Get PDF
    The main purpose of this project is to develop a low cost, effective, user friendly interface software for staff and students to integrate the designing and manufacturing facilities in the Institute of Technology and Engineering (ITE) at Massey University, Palmerston North, New Zealand. The project involves establishment of an integrated CAD/CAM/CAE system, the identification of software requirements, selection of software development tool kit, definition of hardware configuration, software development and final experiments and tests. ITE has a laboratory, where are equipped with one CNC milling machine, one CNC lathe, one Injection Moulding machine, one desktop 3D scanner and one 3D plotter. In addition, all the CAD/CAM/CAE software have been installed on the PCs. Based on the analysis and utilisation of these existing facilities, it is found that they are not smoothly integrated; no linkage between the CAD/CAM/CAE system and desktop Rapid Prototyping facilities; file formats used by each of the system are not compatible. Through this project, the investigation of the possibility to integrate the system and the feasibility to develop a software to bridge the 3D scanner and the CNC mill, was carried out. A first try was successfully made using Borland C++5.0 to convert the 3D scanned data into NC program. Then, using Borland C++ Builder 5.0 created a user-friendly interface for conversion of 3D Digitizer to CNC Mill. Next, the different scales of wax models were satisfactorily processed on the CNC milling machine by inputting the converted NC program

    Principles for aerospace manufacturing engineering in integrated new product introduction

    Get PDF
    This article investigates the value-adding practices of Manufacturing Engineering for integrated New Product Introduction. A model representing how current practices align to support lean integration in Manufacturing Engineering has been defined. The results are used to identify a novel set of guiding principles for integrated Manufacturing Engineering. These are as follows: (1) use a data-driven process, (2) build from core capabilities, (3) develop the standard, (4) deliver through responsive processes and (5) align cross-functional and customer requirements. The investigation used a mixed-method approach. This comprises case studies to identify current practice and a survey to understand implementation in a sample of component development projects within a major aerospace manufacturer. The research contribution is an illustration of aerospace Manufacturing Engineering practices for New Product Introduction. The conclusions will be used to indicate new priorities for New Product Introduction and the cross-functional interactions to support flawless and innovative New Product Introduction. The final principles have been validated through a series of consultations with experts in the sponsoring company to ensure that correct and relevant content has been defined

    A method to Formalise the Rapid Prototyping Process

    Get PDF
    Facing the increasing complexity of the product design area, (reduction of cycle times, introduction of simultaneous engineering, introduction of digital mock-up, ... ) a research department which wants to define a rapid prototyping process is confronted to the problem of the tools’ choice. Therefore, we will propose in this article, a method allowing to conceive such a process. In a first chapter, we present the rapid prototyping area in the product design environment, in a second chapter we will propose our method illustrated by an industrial case

    Extending the product portfolio with ‘devolved manufacturing’: Methodology and case studies

    Get PDF
    Current research by the developers of rapid prototyping systems is generally focused on improvements in cost, speed and materials to create truly economic and practical economic rapid manufacturing machines. In addition to being potentially smarter/faster/cheaper replacements for existing manufacturing technologies, the next generation of these machines will provide opportunities not only for the design and fabrication of products without traditional constraints, but also for organizing manufacturing activities in new, innovative and previously undreamt of ways. This paper outlines a novel devolved manufacturing (DM) ‘factory-less’ approach to e-manufacturing, which integrates Mass Customization (MC) concepts, Rapid Manufacturing (RM) technologies and the communication opportunities of the Internet/WWW, describes two case studies of different DM implementations and discusses the limitations and appropriateness of each, and finally, draws some conclusions about the technical, manufacturing and business challenges involved

    A requirements engineering framework for integrated systems development for the construction industry

    Get PDF
    Computer Integrated Construction (CIC) systems are computer environments through which collaborative working can be undertaken. Although many CIC systems have been developed to demonstrate the communication and collaboration within the construction projects, the uptake of CICs by the industry is still inadequate. This is mainly due to the fact that research methodologies of the CIC development projects are incomplete to bridge the technology transfer gap. Therefore, defining comprehensive methodologies for the development of these systems and their effective implementation on real construction projects is vital. Requirements Engineering (RE) can contribute to the effective uptake of these systems because it drives the systems development for the targeted audience. This paper proposes a requirements engineering approach for industry driven CIC systems development. While some CIC systems are investigated to build a broad and deep contextual knowledge in the area, the EU funded research project, DIVERCITY (Distributed Virtual Workspace for Enhancing Communication within the Construction Industry), is analysed as the main case study project because its requirements engineering approach has the potential to determine a framework for the adaptation of requirements engineering in order to contribute towards the uptake of CIC systems
    • 

    corecore