3,530 research outputs found

    Definition and evaluation of model-free coordination of electrical vehicle charging with reinforcement learning

    Get PDF
    Demand response (DR) becomes critical to manage the charging load of a growing electric vehicle (EV) deployment. Initial DR studies mainly adopt model predictive control, but models are largely uncertain for the EV scenario (e.g., customer behavior). Model-free approaches, based on reinforcement learning (RL), are an attractive alternative. We propose a new Markov decision process (MDP) formulation in the RL framework, to jointly coordinate a set of charging stations. State-of-the-art algorithms either focus on a single EV, or control an aggregate of EVs in multiple steps (e.g., 1) make aggregate load decisions and 2) translate the aggregate decision to individual EVs). In contrast, our RL approach jointly controls the whole set of EVs at once. We contribute a new MDP formulation with a scalable state representation independent of the number of charging stations. Using a batch RL algorithm, fitted QQ -iteration, we learn an optimal charging policy. With simulations using real-world data, we: 1) differentiate settings in training the RL policy (e.g., the time span covered by training data); 2) compare its performance to an oracle all-knowing benchmark (providing an upper performance bound); 3) analyze performance fluctuations throughout a full year; and 4) demonstrate generalization capacity to larger sets of charging stations

    Online Battery Protective Energy Management for Energy-Transportation Nexus

    Get PDF

    A Robust and Constrained Multi-Agent Reinforcement Learning Framework for Electric Vehicle AMoD Systems

    Full text link
    Electric vehicles (EVs) play critical roles in autonomous mobility-on-demand (AMoD) systems, but their unique charging patterns increase the model uncertainties in AMoD systems (e.g. state transition probability). Since there usually exists a mismatch between the training and test (true) environments, incorporating model uncertainty into system design is of critical importance in real-world applications. However, model uncertainties have not been considered explicitly in EV AMoD system rebalancing by existing literature yet and remain an urgent and challenging task. In this work, we design a robust and constrained multi-agent reinforcement learning (MARL) framework with transition kernel uncertainty for the EV rebalancing and charging problem. We then propose a robust and constrained MARL algorithm (ROCOMA) that trains a robust EV rebalancing policy to balance the supply-demand ratio and the charging utilization rate across the whole city under state transition uncertainty. Experiments show that the ROCOMA can learn an effective and robust rebalancing policy. It outperforms non-robust MARL methods when there are model uncertainties. It increases the system fairness by 19.6% and decreases the rebalancing costs by 75.8%.Comment: 8 page

    Reduced state space and cost function in reinforcement learning for demand response control of multiple EV charging stations

    No full text
    Electric vehicle (EV) charging stations represent a substantial load with significant flexibility. Balancing such load with model-free demand response (DR) based on reinforcement learning (RL) is an attractive approach. We build on previous RL research using a Markov decision process (MDP) to simultaneously coordinate multiple charging stations. The previously proposed approach is computationally expensive in terms of large training times, limiting its feasibility and practicality. We propose to a priori force the control policy to always fulfill any charging demand that does not offer any flexibility at a given point, and thus use an updated cost function. We compare the policy of the newly proposed approach with the original (costly) one, for the case of load flattening, in terms of (i) processing time to learn the RL-based charging policy, and (ii) overall performance of the policy decisions in terms of meeting the target load for unseen test data

    A systematic review of machine learning techniques related to local energy communities

    Get PDF
    In recent years, digitalisation has rendered machine learning a key tool for improving processes in several sectors, as in the case of electrical power systems. Machine learning algorithms are data-driven models based on statistical learning theory and employed as a tool to exploit the data generated by the power system and its users. Energy communities are emerging as novel organisations for consumers and prosumers in the distribution grid. These communities may operate differently depending on their objectives and the potential service the community wants to offer to the distribution system operator. This paper presents the conceptualisation of a local energy community on the basis of a review of 25 energy community projects. Furthermore, an extensive literature review of machine learning algorithms for local energy community applications was conducted, and these algorithms were categorised according to forecasting, storage optimisation, energy management systems, power stability and quality, security, and energy transactions. The main algorithms reported in the literature were analysed and classified as supervised, unsupervised, and reinforcement learning algorithms. The findings demonstrate the manner in which supervised learning can provide accurate models for forecasting tasks. Similarly, reinforcement learning presents interesting capabilities in terms of control-related applications.publishedVersio

    Resilient Load Restoration in Microgrids Considering Mobile Energy Storage Fleets: A Deep Reinforcement Learning Approach

    Full text link
    Mobile energy storage systems (MESSs) provide mobility and flexibility to enhance distribution system resilience. The paper proposes a Markov decision process (MDP) formulation for an integrated service restoration strategy that coordinates the scheduling of MESSs and resource dispatching of microgrids. The uncertainties in load consumption are taken into account. The deep reinforcement learning (DRL) algorithm is utilized to solve the MDP for optimal scheduling. Specifically, the twin delayed deep deterministic policy gradient (TD3) is applied to train the deep Q-network and policy network, then the well trained policy can be deployed in on-line manner to perform multiple actions simultaneously. The proposed model is demonstrated on an integrated test system with three microgrids connected by Sioux Falls transportation network. The simulation results indicate that mobile and stationary energy resources can be well coordinated to improve system resilience.Comment: Submitted to 2020 IEEE Power and Energy Society General Meetin

    Approaches for Future Internet architecture design and Quality of Experience (QoE) Control

    Get PDF
    Researching a Future Internet capable of overcoming the current Internet limitations is a strategic investment. In this respect, this paper presents some concepts that can contribute to provide some guidelines to overcome the above-mentioned limitations. In the authors' vision, a key Future Internet target is to allow applications to transparently, efficiently and flexibly exploit the available network resources with the aim to match the users' expectations. Such expectations could be expressed in terms of a properly defined Quality of Experience (QoE). In this respect, this paper provides some approaches for coping with the QoE provision problem
    • …
    corecore