78,940 research outputs found

    Algebras for Classifying Regular Tree Languages and an Application to Frontier Testability

    Get PDF
    Point-tree algebras, a class of equational three-sorted algebras are defined. The elements of sort t of the free point-tree algebra T generated by a set A are identified with finite binary trees with labels in A. A set L of finite binary trees over A is recognized by a point-tree algebr B if there exists a homomorphism h from T in B such that L is an inverse image of h. A tree language is regular if and only if it is recognized by a finite point-tree algebra. There exists a smallest recognizing point-tree algebra for every tree language, the so-called syntactic point-tree algebra. For regular tree languages, this point-tree algebra is computable from a (minimal) recognizing tree automaton. The class of finite point-tree algebras recognizing frontier testable (also known as reverse definite) tree languages is described by means of equations. This gives a cubic algorithm deciding whether a given regular tree language (over a fixed alphabet) is frontier testable. The characterization of the class of frontier testable languages in terms of equations is in contrast with other algebraic approaches to the classification of tree languages (the semigroup and the universal-algebraic approach) where such equations are not possible or not known

    EF+EX Forest Algebras

    Full text link
    We examine languages of unranked forests definable using the temporal operators EF and EX. We characterize the languages definable in this logic, and various fragments thereof, using the syntactic forest algebras introduced by Bojanczyk and Walukiewicz. Our algebraic characterizations yield efficient algorithms for deciding when a given language of forests is definable in this logic. The proofs are based on understanding the wreath product closures of a few small algebras, for which we introduce a general ideal theory for forest algebras. This combines ideas from the work of Bojanczyk and Walukiewicz for the analogous logics on binary trees and from early work of Stiffler on wreath product of finite semigroups

    Large Aperiodic Semigroups

    Get PDF
    The syntactic complexity of a regular language is the size of its syntactic semigroup. This semigroup is isomorphic to the transition semigroup of the minimal deterministic finite automaton accepting the language, that is, to the semigroup generated by transformations induced by non-empty words on the set of states of the automaton. In this paper we search for the largest syntactic semigroup of a star-free language having nn left quotients; equivalently, we look for the largest transition semigroup of an aperiodic finite automaton with nn states. We introduce two new aperiodic transition semigroups. The first is generated by transformations that change only one state; we call such transformations and resulting semigroups unitary. In particular, we study complete unitary semigroups which have a special structure, and we show that each maximal unitary semigroup is complete. For n≥4n \ge 4 there exists a complete unitary semigroup that is larger than any aperiodic semigroup known to date. We then present even larger aperiodic semigroups, generated by transformations that map a non-empty subset of states to a single state; we call such transformations and semigroups semiconstant. In particular, we examine semiconstant tree semigroups which have a structure based on full binary trees. The semiconstant tree semigroups are at present the best candidates for largest aperiodic semigroups. We also prove that 2n−12^n-1 is an upper bound on the state complexity of reversal of star-free languages, and resolve an open problem about a special case of state complexity of concatenation of star-free languages.Comment: 22 pages, 1 figure, 2 table

    A correct, precise and efficient integration of set-sharing, freeness and linearity for the analysis of finite and rational tree languages

    Get PDF
    It is well known that freeness and linearity information positively interact with aliasing information, allowing both the precision and the efficiency of the sharing analysis of logic programs to be improved. In this paper, we present a novel combination of set-sharing with freeness and linearity information, which is characterized by an improved abstract unification operator. We provide a new abstraction function and prove the correctness of the analysis for both the finite tree and the rational tree cases. Moreover, we show that the same notion of redundant information as identified in Bagnara et al. (2000) and Zaffanella et al. (2002) also applies to this abstract domain combination: this allows for the implementation of an abstract unification operator running in polynomial time and achieving the same precision on all the considered observable properties

    An overview of object marking in Kiluguru

    Get PDF
    • …
    corecore