1,291 research outputs found

    Maximum Energy Subsampling: A General Scheme For Multi-resolution Image Representation And Analysis

    Get PDF
    Image descriptors play an important role in image representation and analysis. Multi-resolution image descriptors can effectively characterize complex images and extract their hidden information. Wavelets descriptors have been widely used in multi-resolution image analysis. However, making the wavelets transform shift and rotation invariant produces redundancy and requires complex matching processes. As to other multi-resolution descriptors, they usually depend on other theories or information, such as filtering function, prior-domain knowledge, etc.; that not only increases the computation complexity, but also generates errors. We propose a novel multi-resolution scheme that is capable of transforming any kind of image descriptor into its multi-resolution structure with high computation accuracy and efficiency. Our multi-resolution scheme is based on sub-sampling an image into an odd-even image tree. Through applying image descriptors to the odd-even image tree, we get the relative multi-resolution image descriptors. Multi-resolution analysis is based on downsampling expansion with maximum energy extraction followed by upsampling reconstruction. Since the maximum energy usually retained in the lowest frequency coefficients; we do maximum energy extraction through keeping the lowest coefficients from each resolution level. Our multi-resolution scheme can analyze images recursively and effectively without introducing artifacts or changes to the original images, produce multi-resolution representations, obtain higher resolution images only using information from lower resolutions, compress data, filter noise, extract effective image features and be implemented in parallel processing

    3D medical volume segmentation using hybrid multiresolution statistical approaches

    Get PDF
    This article is available through the Brunel Open Access Publishing Fund. Copyright © 2010 S AlZu’bi and A Amira.3D volume segmentation is the process of partitioning voxels into 3D regions (subvolumes) that represent meaningful physical entities which are more meaningful and easier to analyze and usable in future applications. Multiresolution Analysis (MRA) enables the preservation of an image according to certain levels of resolution or blurring. Because of multiresolution quality, wavelets have been deployed in image compression, denoising, and classification. This paper focuses on the implementation of efficient medical volume segmentation techniques. Multiresolution analysis including 3D wavelet and ridgelet has been used for feature extraction which can be modeled using Hidden Markov Models (HMMs) to segment the volume slices. A comparison study has been carried out to evaluate 2D and 3D techniques which reveals that 3D methodologies can accurately detect the Region Of Interest (ROI). Automatic segmentation has been achieved using HMMs where the ROI is detected accurately but suffers a long computation time for its calculations

    Evaluation of fractal dimension effectiveness for damage detection in retinal background

    Full text link
    [EN] This work investigates the characterization of bright lesions in retinal fundus images using texture analysis techniques. Exudates and drusen are evidences of retinal damage in diabetic retinopathy (DR) and age-related macular degeneration (AMD) respectively. An automatic detection of pathological tissues could make possible an early detection of these diseases. In this work, fractal analysis is explored in order to discriminate between pathological and healthy retinal texture. After a deep preprocessing step, in which spatial and colour normalization are performed, the fractal dimension is extracted locally by computing the Hurst exponent (H) along different directions. The greyscale image is described by the increments of the fractional Brownian motion model and the H parameter is computed by linear regression in the frequency domain. The ability of fractal dimension to detect pathological tissues is demonstrated using a home-made system, based on fractal analysis and Support Vector Machine, able to achieve around a 70% and 83% of accuracy in E-OPHTHA and DIARETDB1 public databases respectively. In a second experiment, the fractal descriptor is combined with texture information, extracted by the Local Binary Patterns, improving the bright lesion detection. Accuracy, sensitivity and specificity values higher than 89%, 80% and 90% respectively suggest that the method presented in this paper is a robust algorithm for describing retina texture and can be useful in the automatic detection of DR and AMD.This paper was supported by the European Union's Horizon 2020 research and innovation programme under the Project GALAHAD [H2020-ICT-2016-2017, 732613]. In addition, this work was partially funded by the Ministerio de Economia y Competitividad of Spain, Project SICAP [DPI2016-77869-C2-1-R]. The work of Adrian Colomer has been supported by the Spanish Government under a FPI Grant [BES-2014-067889]. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.Colomer, A.; Naranjo Ornedo, V.; Janvier, T.; Mossi García, JM. (2018). Evaluation of fractal dimension effectiveness for damage detection in retinal background. Journal of Computational and Applied Mathematics. 337:341-353. https://doi.org/10.1016/j.cam.2018.01.005S34135333

    Entropy in Dynamic Systems

    Get PDF
    In order to measure and quantify the complex behavior of real-world systems, either novel mathematical approaches or modifications of classical ones are required to precisely predict, monitor, and control complicated chaotic and stochastic processes. Though the term of entropy comes from Greek and emphasizes its analogy to energy, today, it has wandered to different branches of pure and applied sciences and is understood in a rather rough way, with emphasis placed on the transition from regular to chaotic states, stochastic and deterministic disorder, and uniform and non-uniform distribution or decay of diversity. This collection of papers addresses the notion of entropy in a very broad sense. The presented manuscripts follow from different branches of mathematical/physical sciences, natural/social sciences, and engineering-oriented sciences with emphasis placed on the complexity of dynamical systems. Topics like timing chaos and spatiotemporal chaos, bifurcation, synchronization and anti-synchronization, stability, lumped mass and continuous mechanical systems modeling, novel nonlinear phenomena, and resonances are discussed

    Dynamically Correct Formulations of the Linearised Navier-Stokes Equations

    Get PDF
    Motivated by the need to efficiently obtain low-order models of fluid flows around complex geometries for the purpose of feedback control system design, this paper considers the effect on system dynamics of basing plant models on different formulations of the linearised Navier-Stokes equations. We consider the dynamics of a single computational node formed by spatial discretisation of the governing equations in both primitive variables (momentum equation & continuity equation) and pressure Poisson equation (PPE) formulations. This reveals fundamental numerical differences at the nodal level, whose effects on the system dynamics at the full system level are exemplified by considering the corresponding formulations of a two-dimensional (2D) channel flow, subjected to a variety of different boundary conditions

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    corecore