480 research outputs found

    Towards Comprehensive Foundations of Computational Intelligence

    Full text link
    Abstract. Although computational intelligence (CI) covers a vast variety of different methods it still lacks an integrative theory. Several proposals for CI foundations are discussed: computing and cognition as compression, meta-learning as search in the space of data models, (dis)similarity based methods providing a framework for such meta-learning, and a more general approach based on chains of transformations. Many useful transformations that extract information from features are discussed. Heterogeneous adaptive systems are presented as particular example of transformation-based systems, and the goal of learning is redefined to facilitate creation of simpler data models. The need to understand data structures leads to techniques for logical and prototype-based rule extraction, and to generation of multiple alternative models, while the need to increase predictive power of adaptive models leads to committees of competent models. Learning from partial observations is a natural extension towards reasoning based on perceptions, and an approach to intuitive solving of such problems is presented. Throughout the paper neurocognitive inspirations are frequently used and are especially important in modeling of the higher cognitive functions. Promising directions such as liquid and laminar computing are identified and many open problems presented.

    External Support Vector Machine Clustering

    Get PDF
    The external-Support Vector Machine (SVM) clustering algorithm clusters data vectors with no a priori knowledge of each vector\u27s class. The algorithm works by first running a binary SVM against a data set, with each vector in the set randomly labeled, until the SVM converges. It then relabels data points that are mislabeled and a large distance from the SVM hyperplane. The SVM is then iteratively rerun followed by more label swapping until no more progress can be made. After this process, a high percentage of the previously unknown class labels of the data set will be known. With sub-cluster identification upon iterating the overall algorithm on the positive and negative clusters identified (until the clusters are no longer separable into sub-clusters), this method provides a way to cluster data sets without prior knowledge of the data\u27s clustering characteristics, or the number of clusters

    External Support Vector Machine Clustering

    Get PDF
    The external-Support Vector Machine (SVM) clustering algorithm clusters data vectors with no a priori knowledge of each vector\u27s class. The algorithm works by first running a binary SVM against a data set, with each vector in the set randomly labeled, until the SVM converges. It then relabels data points that are mislabeled and a large distance from the SVM hyperplane. The SVM is then iteratively rerun followed by more label swapping until no more progress can be made. After this process, a high percentage of the previously unknown class labels of the data set will be known. With sub-cluster identification upon iterating the overall algorithm on the positive and negative clusters identified (until the clusters are no longer separable into sub-clusters), this method provides a way to cluster data sets without prior knowledge of the data\u27s clustering characteristics, or the number of clusters

    Spectral and spatial methods for the classification of urban remote sensing data

    Get PDF
    Lors de ces travaux, nous nous sommes intéressés au problème de la classification supervisée d'images satellitaires de zones urbaines. Les données traitées sont des images optiques à très hautes résolutions spatiales: données panchromatiques à très haute résolution spatiale (IKONOS, QUICKBIRD, simulations PLEIADES) et des images hyperspectrales (DAIS, ROSIS). Deux stratégies ont été proposées. La première stratégie consiste en une phase d'extraction de caractéristiques spatiales et spectrales suivie d'une phase de classification. Ces caractéristiques sont extraites par filtrages morphologiques : ouvertures et fermetures géodésiques et filtrages surfaciques auto-complémentaires. La classification est réalisée avec les machines à vecteurs supports (SVM) non linéaires. Nous proposons la définition d'un noyau spatio-spectral utilisant de manière conjointe l'information spatiale et l'information spectrale extraites lors de la première phase. La seconde stratégie consiste en une phase de fusion de données pre- ou post-classification. Lors de la fusion postclassification, divers classifieurs sont appliqués, éventuellement sur plusieurs données issues d'une même scène (image panchromat ique, image multi-spectrale). Pour chaque pixel, l'appartenance à chaque classe est estimée à l'aide des classifieurs. Un schéma de fusion adaptatif permettant d'utiliser l'information sur la fiabilité locale de chaque classifieur, mais aussi l'information globale disponible a priori sur les performances de chaque algorithme pour les différentes classes, est proposé. Les différents résultats sont fusionnés à l'aide d'opérateurs flous. Les méthodes ont été validées sur des images réelles. Des améliorations significatives sont obtenues par rapport aux méthodes publiées dans la litterature

    Evolutionary Granular Kernel Machines

    Get PDF
    Kernel machines such as Support Vector Machines (SVMs) have been widely used in various data mining applications with good generalization properties. Performance of SVMs for solving nonlinear problems is highly affected by kernel functions. The complexity of SVMs training is mainly related to the size of a training dataset. How to design a powerful kernel, how to speed up SVMs training and how to train SVMs with millions of examples are still challenging problems in the SVMs research. For these important problems, powerful and flexible kernel trees called Evolutionary Granular Kernel Trees (EGKTs) are designed to incorporate prior domain knowledge. Granular Kernel Tree Structure Evolving System (GKTSES) is developed to evolve the structures of Granular Kernel Trees (GKTs) without prior knowledge. A voting scheme is also proposed to reduce the prediction deviation of GKTSES. To speed up EGKTs optimization, a master-slave parallel model is implemented. To help SVMs challenge large-scale data mining, a Minimum Enclosing Ball (MEB) based data reduction method is presented, and a new MEB-SVM algorithm is designed. All these kernel methods are designed based on Granular Computing (GrC). In general, Evolutionary Granular Kernel Machines (EGKMs) are investigated to optimize kernels effectively, speed up training greatly and mine huge amounts of data efficiently

    A branching fuzzy-logic classifier for building optimization

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.Includes bibliographical references (p. 109-110).We present an input-output model that learns to emulate a complex building simulation of high dimensionality. Many multi-dimensional systems are dominated by the behavior of a small number of inputs over a limited range of input variation. Some also exhibit a tendency to respond relatively strongly to certain inputs over small ranges, and to other inputs over very large ranges of input variation. A branching linear discriminant can be used to isolate regions of local linearity in the input space, while also capturing the effects of scale. The quality of the classification may be improved by using a fuzzy preference relation to classify input configurations that are not well handled by the linear discriminant.by Matthew A. Lehar.Ph.D

    Machine learning and soft computing approaches to microarray differential expression analysis and feature selection.

    Get PDF
    Differential expression analysis and feature selection is central to gene expression microarray data analysis. Standard approaches are flawed with the arbitrary assignment of cut-off parameters and the inability to adapt to the particular data set under analysis. Presented in this thesis are three novel approaches to microarray data feature selection and differential expression analysis based on various machine learning and soft computing paradigms. The first approach uses a Separability Index to select ranked genes, making gene selection less arbitrary and more data intrinsic. The second approach is a novel gene ranking system, the Fuzzy Gene Filter, which provides a more holistic and adaptive approach to ranking genes. The third approach is based on a Stochastic Search paradigm and uses the Population Based Incremental Learning algorithm to identify an optimal gene set with maximum inter-class distinction. All three approaches were implemented and tested on a number of data sets and the results compared to those of standard approaches. The Separability Index approach attained a K-Nearest Neighbour classification accuracy of 92%, outperforming the standard approach which attained an accuracy of 89.6%. The gene list identified also displayed significant functional enrichment. The Fuzzy Gene Filter also outperformed standard approaches, attaining significantly higher accuracies for all of the classifiers tested, on both data sets (p < 0.0231 for the prostate data set and p < 0.1888 for the lymphoma data set). Population Based Incremental Learning outperformed Genetic Algorithm, identifying a maximum Separability Index of 97.04% (as opposed to 96.39%). Future developments include incorporating biological knowledge when ranking genes using the Fuzzy Gene Filter as well as incorporating a functional enrichment assessment in the fitness function of the Population Based Incremental Learning algorithm
    corecore