3,834 research outputs found

    Construction of a taxonomy for requirements engineering commercial-off-the-shelf components

    Get PDF
    This article presents a procedure for constructing a taxonomy of COTS products in the field of Requirements Engineering (RE). The taxonomy and the obtained information reach transcendental benefits to the selection of systems and tools that aid to RE-related actors to simplify and facilitate their work. This taxonomy is performed by means of a goal-oriented methodology inspired in GBRAM (Goal-Based Requirements Analysis Method), called GBTCM (Goal-Based Taxonomy Construction Method), that provides a guide to analyze sources of information and modeling requirements and domains, as well as gathering and organizing the knowledge in any segment of the COTS market. GBTCM claims to promote the use of standards and the reuse of requirements in order to support different processes of selection and integration of components.Peer ReviewedPostprint (published version

    A framework for the definition of metrics for actor-dependency models

    Get PDF
    Actor-dependency models are a formalism aimed at providing intentional descriptions of processes as a network of dependency relationships among actors. This kind of models is currently widely used in the early phase of requirements engineering as well as in other contexts such as organizational analysis and business process reengineering. In this paper, we are interested in the definition of a framework for the formulation of metrics over these models. These metrics are used to analyse the models with respect to some properties that are interesting for the system being modelled, such as security, efficiency or accuracy. The metrics are defined in terms of the actors and dependencies of the model. We distinguish three different kinds of metrics that are formally defined, and then we apply the framework at two different layers of a meeting scheduler system.Postprint (published version

    Unsolved Tricky Issues on COTS Selection and Evaluation

    Get PDF
    Component Based Software Engineering (CBSE) approach is based on the idea to develop software systems by selecting appropriate components and then to assemble them with a well-defined software architecture. (CBSE) offers developers the twin benefits of reduced software life cycles, shorter development times , saving cost and less effort as compare to build own component. However the success of the component based paradigm depends on the quality of the commercial off-the-shelf (COTS) components purchased and integrated into the existing software systems. It is need of the time to present a quality model that can be used by software programmer to evaluate the quality of software components before integrating them into legacy systems. The evaluation and selection of the COTS components are the most critical process. These evaluation and selection method cannot be resolved by the IT professionals itself. In this study the author tried to compare the twenty three available systematic methods for best evaluation and selection of COTS components

    COTS Evaluation

    Get PDF
    This article presents an extensive literature review of the empirical studies carried out in past for evaluation and selection of components during the design phase of Component Based Software Systems (CBSS). In CBSS approach the software systems can be developed by selecting appropriate components which then are assembled to form a complete software system. These Components can be either of the two (a) COTS (Commercial-off-the-Shelf) components or (b) Inhouse built components. These components are selected based on different parameters of cost, reliability, delivery time etc. Therefore, optimal selection of the components plays a vital role in development of CBSS as it saves time and effort. Related articles appearing in the International Journals from 1992 to 2014 are gathered and are critically analyzed. Based on the review it is seen that some of the important issues have not been explored fully. Hence there is scope of improvement which paves the path for future work

    The Knowledge Application and Utilization Framework Applied to Defense COTS: A Research Synthesis for Outsourced Innovation

    Get PDF
    Purpose -- Militaries of developing nations face increasing budget pressures, high operations tempo, a blitzing pace of technology, and adversaries that often meet or beat government capabilities using commercial off-the-shelf (COTS) technologies. The adoption of COTS products into defense acquisitions has been offered to help meet these challenges by essentially outsourcing new product development and innovation. This research summarizes extant research to develop a framework for managing the innovative and knowledge flows. Design/Methodology/Approach – A literature review of 62 sources was conducted with the objectives of identifying antecedents (barriers and facilitators) and consequences of COTS adoption. Findings – The DoD COTS literature predominantly consists of industry case studies, and there’s a strong need for further academically rigorous study. Extant rigorous research implicates the importance of the role of knowledge management to government innovative thinking that relies heavily on commercial suppliers. Research Limitations/Implications – Extant academically rigorous studies tend to depend on measures derived from work in information systems research, relying on user satisfaction as the outcome. Our findings indicate that user satisfaction has no relationship to COTS success; technically complex governmental purchases may be too distant from users or may have socio-economic goals that supersede user satisfaction. The knowledge acquisition and utilization framework worked well to explain the innovative process in COTS. Practical Implications – Where past research in the commercial context found technological knowledge to outweigh market knowledge in terms of importance, our research found the opposite. Managers either in government or marketing to government should be aware of the importance of market knowledge for defense COTS innovation, especially for commercial companies that work as system integrators. Originality/Value – From the literature emerged a framework of COTS product usage and a scale to measure COTS product appropriateness that should help to guide COTS product adoption decisions and to help manage COTS product implementations ex post

    Use of COTS functional analysis software as an IVHM design tool for detection and isolation of UAV fuel system faults

    Get PDF
    This paper presents a new approach to the development of health management solutions which can be applied to both new and legacy platforms during the conceptual design phase. The approach involves the qualitative functional modelling of a system in order to perform an Integrated Vehicle Health Management (IVHM) design – the placement of sensors and the diagnostic rules to be used in interrogating their output. The qualitative functional analysis was chosen as a route for early assessment of failures in complex systems. Functional models of system components are required for capturing the available system knowledge used during various stages of system and IVHM design. MADe™ (Maintenance Aware Design environment), a COTS software tool developed by PHM Technology, was used for the health management design. A model has been built incorporating the failure diagrams of five failure modes for five different components of a UAV fuel system. Thus an inherent health management solution for the system and the optimised sensor set solution have been defined. The automatically generated sensor set solution also contains a diagnostic rule set, which was validated on the fuel rig for different operation modes taking into account the predicted fault detection/isolation and ambiguity group coefficients. It was concluded that when using functional modelling, the IVHM design and the actual system design cannot be done in isolation. The functional approach requires permanent input from the system designer and reliability engineers in order to construct a functional model that will qualitatively represent the real system. In other words, the physical insight should not be isolated from the failure phenomena and the diagnostic analysis tools should be able to adequately capture the experience bases. This approach has been verified on a laboratory bench top test rig which can simulate a range of possible fuel system faults. The rig is fully instrumented in order to allow benchmarking of various sensing solution for fault detection/isolation that were identified using functional analysis

    A framework for cots software evaluation and selection for COTS mismatches handling and non-functional requirements

    Get PDF
    The decision to purchase Commercial Off-The-Shelf (COTS) software needs systematic guidelines so that the appropriate COTS software can be selected in order to provide a viable and effective solution to the organizations. However, the existing COTS software evaluation and selection frameworks focus more on functional aspects and do not give adequate attention to accommodate the mismatch between user requirements and COTS software specification, and also integration with non functional requirements of COTS software. Studies have identified that these two criteria are important in COTS software evaluation and selection. Therefore, this study aims to develop a new framework of COTS software evaluation and selection that focuses on handling COTS software mismatches and integrating the nonfunctional requirements. The study is conducted using mixed-mode methodology which involves survey and interview. The study is conducted in four main phases: a survey and interview of 63 organizations to identify COTS software evaluation criteria, development of COTS software evaluation and selection framework using Evaluation Theory, development of a new decision making technique by integrating Analytical Hierarchy Process and Gap Analysis to handle COTS software mismatches, and validation of the practicality and reliability of the proposed COTS software Evaluation and Selection Framework (COTS-ESF) using experts’ review, case studies and yardstick validation. This study has developed the COTS-ESF which consists of five categories of evaluation criteria: Quality, Domain, Architecture, Operational Environment and Vendor Reputation. It also provides a decision making technique and a complete process for performing the evaluation and selection of COTS software. The result of this study shows that the evaluated aspects of the framework are feasible and demonstrate their potential and practicality to be applied in the real environment. The contribution of this study straddles both the research and practical perspectives of software evaluation by improving decision making and providing a systematic guidelines for handling issue in purchasing viable COTS software

    How agile COTS selection methods are (and can be)?

    Get PDF
    Agile methods are proposed nowadays as a way to support software systems procurement. Most of the existing proposals such as eXtreme programming or scrum seem to conceive software procurement as an exercise of software development. However, a great deal of software systems are commercial off-the-shelf (COTS)-based systems, in which the focus changes from bespoke software development to COTS selection and integration. Many proposals for COTS selection have been issued and therefore one may wonder how do they behave from the agile point of view. In this paper, we study the agile principles in the context of COTS selection and we analyze some of the most widespread existing methods. As a result, we identify some practices that would help in making COTS selection processes more agile.Peer ReviewedPostprint (published version

    Software Program: Software Management Guidebook

    Get PDF
    The purpose of this NASA Software Management Guidebook is twofold. First, this document defines the core products and activities required of NASA software projects. It defines life-cycle models and activity-related methods but acknowledges that no single life-cycle model is appropriate for all NASA software projects. It also acknowledges that the appropriate method for accomplishing a required activity depends on characteristics of the software project. Second, this guidebook provides specific guidance to software project managers and team leaders in selecting appropriate life cycles and methods to develop a tailored plan for a software engineering project
    • …
    corecore