25,034 research outputs found

    Multi-Criteria Decision Making in Complex Decision Environments

    Get PDF
    In the future, many decisions will either be fully automated or supported by autonomous system. Consequently, it is of high importance that we understand how to integrate human preferences correctly. This dissertation dives into the research field of multi-criteria decision making and investigates the satellite image acquisition scheduling problem and the unmanned aerial vehicle routing problem to further the research on a priori preference integration frameworks. The work will aid in the transition towards autonomous decision making in complex decision environments. A discussion on the future of pairwise and setwise preference articulation methods is also undertaken. "Simply put, a direct consequence of the improved decision-making methods is,that bad decisions more clearly will stand out as what they are - bad decisions.

    Self-adaptive decision-making mechanisms to balance the execution of multiple tasks for a multi-robots team

    Get PDF
    This work addresses the coordination problem of multiple robots with the goal of finding specific hazardous targets in an unknown area and dealing with them cooperatively. The desired behaviour for the robotic system entails multiple requirements, which may also be conflicting. The paper presents the problem as a constrained bi-objective optimization problem in which mobile robots must perform two specific tasks of exploration and at same time cooperation and coordination for disarming the hazardous targets. These objectives are opposed goals, in which one may be favored, but only at the expense of the other. Therefore, a good trade-off must be found. For this purpose, a nature-inspired approach and an analytical mathematical model to solve this problem considering a single equivalent weighted objective function are presented. The results of proposed coordination model, simulated in a two dimensional terrain, are showed in order to assess the behaviour of the proposed solution to tackle this problem. We have analyzed the performance of the approach and the influence of the weights of the objective function under different conditions: static and dynamic. In this latter situation, the robots may fail under the stringent limited budget of energy or for hazardous events. The paper concludes with a critical discussion of the experimental results

    Flexible and Intelligent Learning Architectures for SOS (FILA-SoS)

    Get PDF
    Multi-faceted systems of the future will entail complex logic and reasoning with many levels of reasoning in intricate arrangement. The organization of these systems involves a web of connections and demonstrates self-driven adaptability. They are designed for autonomy and may exhibit emergent behavior that can be visualized. Our quest continues to handle complexities, design and operate these systems. The challenge in Complex Adaptive Systems design is to design an organized complexity that will allow a system to achieve its goals. This report attempts to push the boundaries of research in complexity, by identifying challenges and opportunities. Complex adaptive system-of-systems (CASoS) approach is developed to handle this huge uncertainty in socio-technical systems

    Next-Best-Sense: a multi-criteria robotic exploration strategy for RFID tags discovery

    Get PDF
    Automated exploration is one of the most relevant applications of autonomous robots. In this paper, we suggest a novel online coverage algorithm called Next-Best-Sense (NBS), an extension of the Next-Best-View class of exploration algorithms that optimizes the exploration task balancing multiple criteria. This novel algorithm is applied to the problem of localizing all Radio Frequency Identification (RFID) tags with a mobile robotic platform that is equipped with a RFID reader. We cast this problem as a coverage planning problem by defining a basic sensing operation -- a scan with the RFID reader -- as the field of “view” of the sensor. NBS evaluates candidate locations with a global utility function which combines utility values for travel distance, information gain, sensing time, battery status and RFID information gain, generalizing the use of Multi-Criteria Decision Making. We developed an RFID reader and tag model in the Gazebo simulator for validation. Experiments performed both in simulation and with a real robot suggest that our NBS approach can successfully localize all the RFID tags while minimizing navigation metrics such sensing operations, total traveling distance and battery consumption. The code developed is publicly available on the authors' repository
    corecore