6,081 research outputs found

    Global Trajectory Optimisation : Can We Prune the Solution Space When Considering Deep Space Manoeuvres? [Final Report]

    Get PDF
    This document contains a report on the work done under the ESA/Ariadna study 06/4101 on the global optimization of space trajectories with multiple gravity assist (GA) and deep space manoeuvres (DSM). The study was performed by a joint team of scientists from the University of Reading and the University of Glasgow

    Comparative study on the application of evolutionary optimization techniques to orbit transfer maneuvers

    Get PDF
    Orbit transfer maneuvers are here considered as benchmark cases for comparing performance of different optimization techniques in the framework of direct methods. Two different classes of evolutionary algorithms, a conventional genetic algorithm and an estimation of distribution method, are compared in terms of performance indices statistically evaluated over a prescribed number of runs. At the same time, two different types of problem representations are considered, a first one based on orbit propagation and a second one based on the solution of Lambert’s problem for direct transfers. In this way it is possible to highlight how problem representation affects the capabilities of the considered numerical approaches

    Technology evaluation of man-rated acceleration test equipment for vestibular research

    Get PDF
    The considerations for eliminating acceleration noise cues in horizontal, linear, cyclic-motion sleds intended for both ground and shuttle-flight applications are addressed. the principal concerns are the acceleration transients associated with change in direction-of-motion for the carriage. The study presents a design limit for acceleration cues or transients based upon published measurements for thresholds of human perception to linear cyclic motion. The sources and levels for motion transients are presented based upon measurements obtained from existing sled systems. The approaches to a noise-free system recommends the use of air bearings for the carriage support and moving-coil linear induction motors operating at low frequency as the drive system. Metal belts running on air bearing pulleys provide an alternate approach to the driving system. The appendix presents a discussion of alternate testing techniques intended to provide preliminary type data by means of pendulums, linear motion devices and commercial air bearing tables

    Development of Cislunar Space Logistics Networks for Satellite Constellation Support Using Event-Driven Generalized Multi-Commodity Network Flows

    Get PDF
    As space becomes an increasingly congested domain, the risk of damage to satellite constellations is increasing. In response, there is an increasing need for capabilities for unmanned repair, refueling, and reconstitution (R3) of those constellations. Cislunar orbits offer a promising storage and low-cost transfer solution for on-orbit service vehicles and replacement satellites to leverage those capabilities. This research makes use of mixed-integer linear programming-based logistics models to determine the situations in which a cislunar mission architecture would offer a cost-effective alternative to Earth-based R3. The network models presented in this research make use of the latest developments in Event-Driven Generalized Multi-Commodity Network Flows (ED-GMCNF), a new method of optimization that enables variable time steps between events. This research combines a new version of an ED-GMCNF with cislunar trajectory optimization to evaluate both the feasibility of cislunar orbits as well as the potential effects of lunar fuel production on R3 costs. This investigation finds, through an exhaustive numerical simulation campaign, that cislunar logistics networks provide cost-effective means of R3 regiments for Earth-orbiting and cislunar satellites when a lunar fuel supply is taken into consideration. The ED-GMCNF methodology also offers a promising foundation for future work in the mission planning field

    Engineering calculations for the Delta S method of solving the orbital allotment problem

    Get PDF
    The method of calculating single-entry separation requirements for pairs of satellites is extended to include the interference on the top link as well as on the down link. Several heuristic models for analyzing the effects of shaped-beam antenna designs on required satellite separations are introduced and demonstrated with gain contour plots. The calculation of aggregate interference is extended to include the effects of up-link interference. The relationship between the single-entry C/I requirements, used in determining satellite separation constraints for various optimization procedures, and the aggregate C/I values of the resulting solutions is discussed

    The Geoscience Laser Altimetry/Ranging System (GLARS)

    Get PDF
    The Geoscience Laser Altimetry Ranging System (GLARS) is a highly precise distance measurement system to be used for making extremely accurate geodetic observations from a space platform. It combines the attributes of a pointable laser ranging system making observations to cube corner retroreflectors placed on the ground with those of a nadir looking laser altimeter making height observations to ground, ice sheet, and oceanic surfaces. In the ranging mode, centimeter-level precise baseline and station coordinate determinations will be made on grids consisting of 100 to 200 targets separated by distances from a few tens of kilometers to about 1000 km. These measurements will be used for studies of seismic zone crustal deformations and tectonic plate motions. Ranging measurements will also be made to a coarser, but globally distributed array of retroreflectors for both precise geodetic and orbit determination applications. In the altimetric mode, relative height determinations will be obtained with approximately decimeter vertical precision and 70 to 100 meter horizontal resolution. The height data will be used to study surface topography and roughness, ice sheet and lava flow thickness, and ocean dynamics. Waveform digitization will provide a measure of the vertical extent of topography within each footprint. The planned Earth Observing System is an attractive candidate platform for GLARS since the GLAR data can be used both for direct analyses and for highly precise orbit determination needed in the reduction of data from other sensors on the multi-instrument platform. (1064, 532, and 355 nm)Nd:YAG laser meets the performance specifications for the system
    • …
    corecore