11 research outputs found

    Design of an energy-efficient geographic routing protocol for mobile ad-hoc networks

    Get PDF
    Mobile Ad-hoc networks extend communications beyond the limit of infrastructure based networks. Future wireless applications will take advantage of rapidly deployable, self-configuring multi-hop mobile Ad-hoc networks. In order to provide robust performance in mobile Ad-hoc networks and hence cope with dynamic path loss conditions, it is apparent that research and development of energy efficient geographic routing protocols is of great importance. Therefore various mobile Ad-hoc routing protocols have been studied for their different approaches. Forwarding strategies for geographic routing protocols are discussed and there is a particular focus on the pass loss model used by those routing protocols, the restriction and disadvantage of using such path loss model is then discussed. A novel geographic routing protocol which incorporates both the link quality and relay node location information has been developed to determine an energy efficient route from source to destination. The concepts of a gain region and a relay region to minimize the energy consumption have been proposed to define the area in where the candidate relay nodes will be selected with the minimized hop count. The signalling overhead required by the protocol has been analyzed in various scenarios with different traffic load, node densities and network sizes. Discrete event simulation models are therefore developed to capture the behaviour and characteristics of the operation of the developed routing protocol under different path loss conditions and network scenarios. A non-free space path loss model has been developed with a random loss between the nodes to simulate a realistic path loss scenario in the network. An enhanced signalling process has been designed in order to achieve advanced routing information exchange and assist routing determination. Comparison of simulated characteristics demonstrates the significant improvement of the new routing protocol because of its novel features, the gain region to ensure the deductiono f the energyc onsumptiont,h e relay region to ensuret he forward progress to the destination and hence maintain an optimised hop count. The simulation results showed that the energy consumption under the operation of the developed protocol is 30% of that with a conventionagl eographicarl outing protocol

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Cooperative Communications inWireless Local Area Networks: MAC Protocol Design and Multi-layer Solutions

    Get PDF
    This dissertation addresses cooperative communications and proposes multi-layer solu- tions for wireless local area networks, focusing on cooperative MAC design. The coop- erative MAC design starts from CSMA/CA based wireless networks. Three key issues of cooperation from the MAC layer are dealt with: i.e., when to cooperate (opportunistic cooperation), whom to cooperate with (relay selection), and how to protect cooperative transmissions (message procedure design). In addition, a cooperative MAC protocol that addresses these three issues is proposed. The relay selection scheme is further optimized in a clustered network to solve the problem of high collision probability in a dense network. The performance of the proposed schemes is evaluated in terms of through- put, packet delivery rate and energy efficiency. Furthermore, the proposed protocol is verified through formal model checking using SPIN. Moreover, a cooperative code allo- cation scheme is proposed targeting at a clustered network where multiple relay nodes can transmit simultaneously. The cooperative communication design is then extended to the routing layer through cross layer routing metrics. Another part of the work aims at enabling concurrent transmissions using cooperative carrier sensing to improve the per- formance in a WLAN network with multiple access points sharing the same channel

    Interoperability of wireless communication technologies in hybrid networks : evaluation of end-to-end interoperability issues and quality of service requirements

    Get PDF
    Hybrid Networks employing wireless communication technologies have nowadays brought closer the vision of communication “anywhere, any time with anyone”. Such communication technologies consist of various standards, protocols, architectures, characteristics, models, devices, modulation and coding techniques. All these different technologies naturally may share some common characteristics, but there are also many important differences. New advances in these technologies are emerging very rapidly, with the advent of new models, characteristics, protocols and architectures. This rapid evolution imposes many challenges and issues to be addressed, and of particular importance are the interoperability issues of the following wireless technologies: Wireless Fidelity (Wi-Fi) IEEE802.11, Worldwide Interoperability for Microwave Access (WiMAX) IEEE 802.16, Single Channel per Carrier (SCPC), Digital Video Broadcasting of Satellite (DVB-S/DVB-S2), and Digital Video Broadcasting Return Channel through Satellite (DVB-RCS). Due to the differences amongst wireless technologies, these technologies do not generally interoperate easily with each other because of various interoperability and Quality of Service (QoS) issues. The aim of this study is to assess and investigate end-to-end interoperability issues and QoS requirements, such as bandwidth, delays, jitter, latency, packet loss, throughput, TCP performance, UDP performance, unicast and multicast services and availability, on hybrid wireless communication networks (employing both satellite broadband and terrestrial wireless technologies). The thesis provides an introduction to wireless communication technologies followed by a review of previous research studies on Hybrid Networks (both satellite and terrestrial wireless technologies, particularly Wi-Fi, WiMAX, DVB-RCS, and SCPC). Previous studies have discussed Wi-Fi, WiMAX, DVB-RCS, SCPC and 3G technologies and their standards as well as their properties and characteristics, such as operating frequency, bandwidth, data rate, basic configuration, coverage, power, interference, social issues, security problems, physical and MAC layer design and development issues. Although some previous studies provide valuable contributions to this area of research, they are limited to link layer characteristics, TCP performance, delay, bandwidth, capacity, data rate, and throughput. None of the studies cover all aspects of end-to-end interoperability issues and QoS requirements; such as bandwidth, delay, jitter, latency, packet loss, link performance, TCP and UDP performance, unicast and multicast performance, at end-to-end level, on Hybrid wireless networks. Interoperability issues are discussed in detail and a comparison of the different technologies and protocols was done using appropriate testing tools, assessing various performance measures including: bandwidth, delay, jitter, latency, packet loss, throughput and availability testing. The standards, protocol suite/ models and architectures for Wi-Fi, WiMAX, DVB-RCS, SCPC, alongside with different platforms and applications, are discussed and compared. Using a robust approach, which includes a new testing methodology and a generic test plan, the testing was conducted using various realistic test scenarios on real networks, comprising variable numbers and types of nodes. The data, traces, packets, and files were captured from various live scenarios and sites. The test results were analysed in order to measure and compare the characteristics of wireless technologies, devices, protocols and applications. The motivation of this research is to study all the end-to-end interoperability issues and Quality of Service requirements for rapidly growing Hybrid Networks in a comprehensive and systematic way. The significance of this research is that it is based on a comprehensive and systematic investigation of issues and facts, instead of hypothetical ideas/scenarios or simulations, which informed the design of a test methodology for empirical data gathering by real network testing, suitable for the measurement of hybrid network single-link or end-to-end issues using proven test tools. This systematic investigation of the issues encompasses an extensive series of tests measuring delay, jitter, packet loss, bandwidth, throughput, availability, performance of audio and video session, multicast and unicast performance, and stress testing. This testing covers most common test scenarios in hybrid networks and gives recommendations in achieving good end-to-end interoperability and QoS in hybrid networks. Contributions of study include the identification of gaps in the research, a description of interoperability issues, a comparison of most common test tools, the development of a generic test plan, a new testing process and methodology, analysis and network design recommendations for end-to-end interoperability issues and QoS requirements. This covers the complete cycle of this research. It is found that UDP is more suitable for hybrid wireless network as compared to TCP, particularly for the demanding applications considered, since TCP presents significant problems for multimedia and live traffic which requires strict QoS requirements on delay, jitter, packet loss and bandwidth. The main bottleneck for satellite communication is the delay of approximately 600 to 680 ms due to the long distance factor (and the finite speed of light) when communicating over geostationary satellites. The delay and packet loss can be controlled using various methods, such as traffic classification, traffic prioritization, congestion control, buffer management, using delay compensator, protocol compensator, developing automatic request technique, flow scheduling, and bandwidth allocation.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Crab and cockle shells as heterogeneous catalysts in the production of biodiesel

    Get PDF
    In the present study, the waste crab and cockle shells were utilized as source of calcium oxide to transesterify palm olein into methyl esters (biodiesel). Characterization results revealed that the main component of the shells are calcium carbonate which transformed into calcium oxide upon activated above 700 °C for 2 h. Parametric studies have been investigated and optimal conditions were found to be catalyst amount, 5 wt.% and methanol/oil mass ratio, 0.5:1. The waste catalysts perform equally well as laboratory CaO, thus creating another low-cost catalyst source for producing biodiesel. Reusability results confirmed that the prepared catalyst is able to be reemployed up to five times. Statistical analysis has been performed using a Central Composite Design to evaluate the contribution and performance of the parameters on biodiesel purity

    Molecular phylogeny of horseshoe crab using mitochondrial Cox1 gene as a benchmark sequence

    Get PDF
    An effort to assess the utility of 650 bp Cytochrome C oxidase subunit I (DNA barcode) gene in delineating the members horseshoe crabs (Family: xiphosura) with closely related sister taxa was made. A total of 33 sequences were extracted from National Center for Biotechnological Information (NCBI) which include horseshoe crabs, beetles, common crabs and scorpion sequences. Constructed phylogram showed beetles are closely related with horseshoe crabs than common crabs. Scorpion spp were distantly related to xiphosurans. Phylogram and observed genetic distance (GD) date were also revealed that Limulus polyphemus was closely related with Tachypleus tridentatus than with T.gigas. Carcinoscorpius rotundicauda was distantly related with L.polyphemus. The observed mean Genetic Distance (GD) value was higher in 3rd codon position in all the selected group of organisms. Among the horseshoe crabs high GC content was observed in L.polyphemus (38.32%) and lowest was observed in T.tridentatus (32.35%). We conclude that COI sequencing (barcoding) could be used in identifying and delineating evolutionary relatedness with closely related specie
    corecore