91,644 research outputs found

    Defining and Evaluating Network Communities based on Ground-truth

    Full text link
    Nodes in real-world networks organize into densely linked communities where edges appear with high concentration among the members of the community. Identifying such communities of nodes has proven to be a challenging task mainly due to a plethora of definitions of a community, intractability of algorithms, issues with evaluation and the lack of a reliable gold-standard ground-truth. In this paper we study a set of 230 large real-world social, collaboration and information networks where nodes explicitly state their group memberships. For example, in social networks nodes explicitly join various interest based social groups. We use such groups to define a reliable and robust notion of ground-truth communities. We then propose a methodology which allows us to compare and quantitatively evaluate how different structural definitions of network communities correspond to ground-truth communities. We choose 13 commonly used structural definitions of network communities and examine their sensitivity, robustness and performance in identifying the ground-truth. We show that the 13 structural definitions are heavily correlated and naturally group into four classes. We find that two of these definitions, Conductance and Triad-participation-ratio, consistently give the best performance in identifying ground-truth communities. We also investigate a task of detecting communities given a single seed node. We extend the local spectral clustering algorithm into a heuristic parameter-free community detection method that easily scales to networks with more than hundred million nodes. The proposed method achieves 30% relative improvement over current local clustering methods.Comment: Proceedings of 2012 IEEE International Conference on Data Mining (ICDM), 201

    Fast community structure local uncovering by independent vertex-centred process

    Get PDF
    This paper addresses the task of community detection and proposes a local approach based on a distributed list building, where each vertex broadcasts basic information that only depends on its degree and that of its neighbours. A decentralised external process then unveils the community structure. The relevance of the proposed method is experimentally shown on both artificial and real data.Comment: 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Aug 2015, Paris, France. Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Minin

    Node-Centric Detection of Overlapping Communities in Social Networks

    Full text link
    We present NECTAR, a community detection algorithm that generalizes Louvain method's local search heuristic for overlapping community structures. NECTAR chooses dynamically which objective function to optimize based on the network on which it is invoked. Our experimental evaluation on both synthetic benchmark graphs and real-world networks, based on ground-truth communities, shows that NECTAR provides excellent results as compared with state of the art community detection algorithms

    On the Permanence of Vertices in Network Communities

    Full text link
    Despite the prevalence of community detection algorithms, relatively less work has been done on understanding whether a network is indeed modular and how resilient the community structure is under perturbations. To address this issue, we propose a new vertex-based metric called "permanence", that can quantitatively give an estimate of the community-like structure of the network. The central idea of permanence is based on the observation that the strength of membership of a vertex to a community depends upon the following two factors: (i) the distribution of external connectivity of the vertex to individual communities and not the total external connectivity, and (ii) the strength of its internal connectivity and not just the total internal edges. In this paper, we demonstrate that compared to other metrics, permanence provides (i) a more accurate estimate of a derived community structure to the ground-truth community and (ii) is more sensitive to perturbations in the network. As a by-product of this study, we have also developed a community detection algorithm based on maximizing permanence. For a modular network structure, the results of our algorithm match well with ground-truth communities.Comment: 10 pages, 5 figures, 8 tables, Accepted in 20th ACM SIGKDD Conference on Knowledge Discovery and Data Minin
    corecore