3,829 research outputs found

    FORGE: An eLearning Framework for Remote Laboratory Experimentation on FIRE Testbed Infrastructure

    Get PDF
    The Forging Online Education through FIRE (FORGE) initiative provides educators and learners in higher education with access to world-class FIRE testbed infrastructure. FORGE supports experimentally driven research in an eLearning environment by complementing traditional classroom and online courses with interactive remote laboratory experiments. The project has achieved its objectives by defining and implementing a framework called FORGEBox. This framework offers the methodology, environment, tools and resources to support the creation of HTML-based online educational material capable accessing virtualized and physical FIRE testbed infrastruc- ture easily. FORGEBox also captures valuable quantitative and qualitative learning analytic information using questionnaires and Learning Analytics that can help optimise and support student learning. To date, FORGE has produced courses covering a wide range of networking and communication domains. These are freely available from FORGEBox.eu and have resulted in over 24,000 experiments undertaken by more than 1,800 students across 10 countries worldwide. This work has shown that the use of remote high- performance testbed facilities for hands-on remote experimentation can have a valuable impact on the learning experience for both educators and learners. Additionally, certain challenges in developing FIRE-based courseware have been identified, which has led to a set of recommendations in order to support the use of FIRE facilities for teaching and learning purposes

    Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    Get PDF
    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power

    The robot programming network

    Get PDF
    The Robot Programming Network (RPN) is an initiative for creating a network of robotics education laboratories with remote programming capabilities. It consists of both online open course materials and online servers that are ready to execute and test the programs written by remote students. Online materials include introductory course modules on robot programming, mobile robotics and humanoids, aimed to learn from basic concepts in science, technology, engineering, and mathematics (STEM) to more advanced programming skills. The students have access to the online server hosts, where they submit and run their programming code on the fly. The hosts run a variety of robot simulation environments, and access to real robots can also be granted, upon successful achievement of the course modules. The learning materials provide step-by-step guidance for solving problems with increasing level of dif- ficulty. Skill tests and challenges are given for checking the success, and online competitions are scheduled for additional motivation and fun. Use of standard robotics middleware (ROS) allows the system to be extended to a large number of robot platforms, and connected to other existing tele-laboratories for building a large social network for online teaching of robotics.Support of IEEE RAS through the CEMRA program (Creation of Educational Material for Robotics and Automation) is gratefully acknowledged. This paper describes research done at the Robotic Intelligence Laboratory. Support for this laboratory is provided in part by Ministerio de Economia y Competitividad (DPI2011-27846), by Generalitat Valenciana (PROMETEOII/2014/028) and by Universitat Jaume I (P1-1B2011-54)

    The Craft of Incentive Prize Design: Lessons from the Public Sector

    Get PDF
    In the last five years, incentive prizes have transformed from an exotic open innovation tool to a proven innovation strategy for the public, private and philanthropic sectors. This report offers practical lessons for public sector leaders and their counterparts in the philanthropic and private sectors to help understand what types of outcomes incentive prizes help to achieve, what design elements prize designers use to create these challenges and how to make smart design choices to achieve a particular outcome. It synthesizes insights from expert interviews and analysis of more than 400 prize

    An Architecture for Online Affordance-based Perception and Whole-body Planning

    Get PDF
    The DARPA Robotics Challenge Trials held in December 2013 provided a landmark demonstration of dexterous mobile robots executing a variety of tasks aided by a remote human operator using only data from the robot's sensor suite transmitted over a constrained, field-realistic communications link. We describe the design considerations, architecture, implementation and performance of the software that Team MIT developed to command and control an Atlas humanoid robot. Our design emphasized human interaction with an efficient motion planner, where operators expressed desired robot actions in terms of affordances fit using perception and manipulated in a custom user interface. We highlight several important lessons we learned while developing our system on a highly compressed schedule

    BCIs and mobile robots for neurological rehabilitation: practical applications of remote control. Remote control of mobile robots applied in non-invasive BCI for disabled users afflicted by motor neurons diseases

    Get PDF
    This project aims at testing the possible advantages of introducing a mobile robot as a physical input/output device in a Brain Computer Interface (BCI) system. In the proposed system, the actions triggered by the subject’s brain activity results in the motions of a physical device in the real world, and not only in a modification of a graphical interface. A goal-based system for destination detecting and the high entertainment level offered by controlling a mobile robot are hence main features for actually increase patients' life quality leve

    Autonomous decision-making for socially interactive robots

    Get PDF
    Mención Internacional en el título de doctorThe aim of this thesis is to present a novel decision-making system based on bio-inspired concepts to decide the actions to make during the interaction between humans and robots. We use concepts from nature to make the robot may behave analogously to a living being for a better acceptance by people. The system is applied to autonomous Socially Interactive Robots that works in environments with users. These objectives are motivated by the need of having robots collaborating, entertaining or helping in educational tasks for real situations with children or elder people where the robot has to behave socially. Moreover, the decision-making system can be integrated into this kind of robots in order to learn how to act depending on the user profile the robot is interacting with. The decision-making system proposed in this thesis is a solution to all these issues in addition to a complement for interactive learning in HRI. We also show real applications of the system proposed applying it in an educational scenario, a situation where the robot can learn and interact with different kinds of people. The last goal of this thesis is to develop a robotic architecture that is able to learn how to behave in different contexts where humans and robots coexist. For that purpose, we design a modular and portable robotic architecture that is included in several robots. Including well-known software engineering techniques together with innovative agile software development procedures that produces an easily extensible architecture.El objetivo de esta tesis es presentar un novedoso sistema de toma de decisiones basado en conceptos bioinspirados para decidir las acciones a realizar durante la interacción entre personas y robots. Usamos conceptos de la naturaleza para hacer que el robot pueda comportarse análogamente a un ser vivo para una mejor aceptación por las personas. El sistema está desarrollado para que se pueda aplicar a los llamados Robots Socialmente Interactivos que están destinados a entornos con usuarios. Estos objetivos están motivados por la necesidad de tener robots en tareas de colaboración, entretenimiento o en educación en situaciones reales con niños o personas mayores en las cuales el robot debe comportarse siguiendo las normas sociales. Además, el sistema de toma de decisiones es integrado en estos tipos de robots con el fin de que pueda aprender a actuar dependiendo del perfil de usuario con el que el robot está interactuando. El sistema de toma de decisiones que proponemos en esta tesis es una solución a todos estos desafíos además de un complemento para el aprendizaje interactivo en la interacción humano-robot. También mostramos aplicaciones reales del sistema propuesto aplicándolo en un escenario educativo, una situación en la que el robot puede aprender e interaccionar con diferentes tipos de personas. El último objetivo de esta tesis es desarrollar un arquitectura robótica que sea capaz de aprender a comportarse en diferentes contextos donde las personas y los robots coexistan. Con ese propósito, diseñamos una arquitectura robótica modular y portable que está incluida en varios robots. Incluyendo técnicas bien conocidas de ingeniería del software junto con procedimientos innovadores de desarrollo de sofware ágil que producen una arquitectura fácilmente extensible.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Fabio Bonsignorio.- Secretario: María Dolores Blanco Rojas.- Vocal: Martin Stoele
    corecore