16,615 research outputs found

    Contract Aware Components, 10 years after

    Get PDF
    The notion of contract aware components has been published roughly ten years ago and is now becoming mainstream in several fields where the usage of software components is seen as critical. The goal of this paper is to survey domains such as Embedded Systems or Service Oriented Architecture where the notion of contract aware components has been influential. For each of these domains we briefly describe what has been done with this idea and we discuss the remaining challenges.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    Checking-in on Network Functions

    Full text link
    When programming network functions, changes within a packet tend to have consequences---side effects which must be accounted for by network programmers or administrators via arbitrary logic and an innate understanding of dependencies. Examples of this include updating checksums when a packet's contents has been modified or adjusting a payload length field of a IPv6 header if another header is added or updated within a packet. While static-typing captures interface specifications and how packet contents should behave, it does not enforce precise invariants around runtime dependencies like the examples above. Instead, during the design phase of network functions, programmers should be given an easier way to specify checks up front, all without having to account for and keep track of these consequences at each and every step during the development cycle. In keeping with this view, we present a unique approach for adding and generating both static checks and dynamic contracts for specifying and checking packet processing operations. We develop our technique within an existing framework called NetBricks and demonstrate how our approach simplifies and checks common dependent packet and header processing logic that other systems take for granted, all without adding much overhead during development.Comment: ANRW 2019 ~ https://irtf.org/anrw/2019/program.htm

    Extending a system with verified components

    Get PDF
    The verification of component-based systems can be extremely complicated because it is usually not possible for system developers to pre-check the compatibility of the individual parts before the actual integration takes place. A system cannot be considered correct if its components do not work properly. Unfortunately, all the information on the correctness of the individual components become irrelevant and out-of-date from the moment they are used anywhere but the original environment. The solution to this problem can be based on the idea of building correct programs in which reliability is built-in. In this paper open incremental model checking - addressing the changes to a system rather than re-checking the entire system model including the new extensions - is discussed and compared to traditional modular model checking methods. In our paper we study the practical aspects and the efficiency of using Open Incremental Model Checking by working out a sample system consisting of verified components

    Safety Contracts for Timed ReactiveComponents in SysML

    Get PDF
    International audienceA variety of system design and architecture description languages, such as SysML, UML or AADL, allows the decomposition of complex system designs into communicating timed components. In this paper we consider the contract-based specification of such components. A contract is a pair formed of an assumption, which is an abstraction of the component’s environment, and a guarantee, which is an abstraction of the component’s behavior given that the environment behaves according to the assumption. Thus, a contract concentrates on a specific aspect of the component’s functionality and on a subset of its interface, which makes it relatively simpler to specify. Contracts may be used as an aid for hierarchical decomposition during design or for verification of properties of composites. This paper defines contracts for components formalized as a variant of timed input/output automata, introduces compositional results allowing to reason with contracts and shows how contracts can be used in a high-level modeling language (SysML) for specification and verification, based on an example extracted from a real-life system

    Towards Smart Hybrid Fuzzing for Smart Contracts

    Get PDF
    Smart contracts are Turing-complete programs that are executed across a blockchain network. Unlike traditional programs, once deployed they cannot be modified. As smart contracts become more popular and carry more value, they become more of an interesting target for attackers. In recent years, smart contracts suffered major exploits, costing millions of dollars, due to programming errors. As a result, a variety of tools for detecting bugs has been proposed. However, majority of these tools often yield many false positives due to over-approximation or poor code coverage due to complex path constraints. Fuzzing or fuzz testing is a popular and effective software testing technique. However, traditional fuzzers tend to be more effective towards finding shallow bugs and less effective in finding bugs that lie deeper in the execution. In this work, we present CONFUZZIUS, a hybrid fuzzer that combines evolutionary fuzzing with constraint solving in order to execute more code and find more bugs in smart contracts. Evolutionary fuzzing is used to exercise shallow parts of a smart contract, while constraint solving is used to generate inputs which satisfy complex conditions that prevent the evolutionary fuzzing from exploring deeper paths. Moreover, we use data dependency analysis to efficiently generate sequences of transactions, that create specific contract states in which bugs may be hidden. We evaluate the effectiveness of our fuzzing strategy, by comparing CONFUZZIUS with state-of-the-art symbolic execution tools and fuzzers. Our evaluation shows that our hybrid fuzzing approach produces significantly better results than state-of-the-art symbolic execution tools and fuzzers

    Metamodel-based model conformance and multiview consistency checking

    Get PDF
    Model-driven development, using languages such as UML and BON, often makes use of multiple diagrams (e.g., class and sequence diagrams) when modeling systems. These diagrams, presenting different views of a system of interest, may be inconsistent. A metamodel provides a unifying framework in which to ensure and check consistency, while at the same time providing the means to distinguish between valid and invalid models, that is, conformance. Two formal specifications of the metamodel for an object-oriented modeling language are presented, and it is shown how to use these specifications for model conformance and multiview consistency checking. Comparisons are made in terms of completeness and the level of automation each provide for checking multiview consistency and model conformance. The lessons learned from applying formal techniques to the problems of metamodeling, model conformance, and multiview consistency checking are summarized

    The Art of The Scam: Demystifying Honeypots in Ethereum Smart Contracts

    Get PDF
    Modern blockchains, such as Ethereum, enable the execution of so-called smart contracts - programs that are executed across a decentralised network of nodes. As smart contracts become more popular and carry more value, they become more of an interesting target for attackers. In the past few years, several smart contracts have been exploited by attackers. However, a new trend towards a more proactive approach seems to be on the rise, where attackers do not search for vulnerable contracts anymore. Instead, they try to lure their victims into traps by deploying seemingly vulnerable contracts that contain hidden traps. This new type of contracts is commonly referred to as honeypots. In this paper, we present the first systematic analysis of honeypot smart contracts, by investigating their prevalence, behaviour and impact on the Ethereum blockchain. We develop a taxonomy of honeypot techniques and use this to build HoneyBadger - a tool that employs symbolic execution and well defined heuristics to expose honeypots. We perform a large-scale analysis on more than 2 million smart contracts and show that our tool not only achieves high precision, but is also highly efficient. We identify 690 honeypot smart contracts as well as 240 victims in the wild, with an accumulated profit of more than $90,000 for the honeypot creators. Our manual validation shows that 87% of the reported contracts are indeed honeypots
    • 

    corecore