2,916 research outputs found

    Detecting and Refactoring Operational Smells within the Domain Name System

    Full text link
    The Domain Name System (DNS) is one of the most important components of the Internet infrastructure. DNS relies on a delegation-based architecture, where resolution of names to their IP addresses requires resolving the names of the servers responsible for those names. The recursive structures of the inter dependencies that exist between name servers associated with each zone are called dependency graphs. System administrators' operational decisions have far reaching effects on the DNSs qualities. They need to be soundly made to create a balance between the availability, security and resilience of the system. We utilize dependency graphs to identify, detect and catalogue operational bad smells. Our method deals with smells on a high-level of abstraction using a consistent taxonomy and reusable vocabulary, defined by a DNS Operational Model. The method will be used to build a diagnostic advisory tool that will detect configuration changes that might decrease the robustness or security posture of domain names before they become into production.Comment: In Proceedings GaM 2015, arXiv:1504.0244

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    Technical Debt Prioritization: State of the Art. A Systematic Literature Review

    Get PDF
    Background. Software companies need to manage and refactor Technical Debt issues. Therefore, it is necessary to understand if and when refactoring Technical Debt should be prioritized with respect to developing features or fixing bugs. Objective. The goal of this study is to investigate the existing body of knowledge in software engineering to understand what Technical Debt prioritization approaches have been proposed in research and industry. Method. We conducted a Systematic Literature Review among 384 unique papers published until 2018, following a consolidated methodology applied in Software Engineering. We included 38 primary studies. Results. Different approaches have been proposed for Technical Debt prioritization, all having different goals and optimizing on different criteria. The proposed measures capture only a small part of the plethora of factors used to prioritize Technical Debt qualitatively in practice. We report an impact map of such factors. However, there is a lack of empirical and validated set of tools. Conclusion. We observed that technical Debt prioritization research is preliminary and there is no consensus on what are the important factors and how to measure them. Consequently, we cannot consider current research conclusive and in this paper, we outline different directions for necessary future investigations

    Detailed Overview of Software Smells

    Get PDF
    This document provides an overview of literature concerning software smells covering various dimensions of smells along with their corresponding references

    Advances and Challenges in Software Refactoring: A Tertiary Systematic Literature Review

    Get PDF
    Software refactoring is one of the most critical aspects of software maintenance. It improves the quality of the software, reduces potential occurrence of bugs and keeps the code easier to maintain, extend and read. The process of refactoring supports and enables the developers to improve the design of software without changing the behavior. However, the automation of this process is complex for developers and software engineers since it is subjective, time and resource consuming. In this context, many literature reviews have analyzed the existing effort made by researchers to facilitate refactoring, as a core software engineering practice. This paper, aims in integrating all the existing research outcomes by performing a tertiary study on all the secondary studies, done in the area of refactoring. Based on our analysis we notice that there are many area of software refactoring that are under studied. As an outcome of this review, several classifications of existing studies were provided to showcase all the studies targeting the automation of refactoring along with explaining what metrics and objectives were used as means to drive refactoring and how it was assessed. This thesis also aims in unveiling areas of future directions for the research community in order to consolidate their efforts in improving the refactoring as a practice

    Code Smells and Refactoring: A Tertiary Systematic Review of Challenges and Observations

    Full text link
    In this paper, we present a tertiary systematic literature review of previous surveys, secondary systematic literature reviews, and systematic mappings. We identify the main observations (what we know) and challenges (what we do not know) on code smells and refactoring. We show that code smells and refactoring have a strong relationship with quality attributes, i.e., with understandability, maintainability, testability, complexity, functionality, and reusability. We argue that code smells and refactoring could be considered as the two faces of a same coin. Besides, we identify how refactoring affects quality attributes, more than code smells. We also discuss the implications of this work for practitioners, researchers, and instructors. We identify 13 open issues that could guide future research work. Thus, we want to highlight the gap between code smells and refactoring in the current state of software-engineering research. We wish that this work could help the software-engineering research community in collaborating on future work on code smells and refactoring

    Towards automated restructuring of object oriented systems

    Get PDF
    The work introduces a method for diagnosing design flaws in object oriented systems, and finding meaningful refactorings to remove such flaws. The method is based on pairing up a structural pattern that is considered pathological (e.g. a code smell or anti-pattern) with a so called design context. The design context describes the design semantics associated to the pathological structure, and the desired strategic closure for that fragment. The process is tool supported and largely automated

    Code smells detection and visualization: A systematic literature review

    Full text link
    Context: Code smells (CS) tend to compromise software quality and also demand more effort by developers to maintain and evolve the application throughout its life-cycle. They have long been catalogued with corresponding mitigating solutions called refactoring operations. Objective: This SLR has a twofold goal: the first is to identify the main code smells detection techniques and tools discussed in the literature, and the second is to analyze to which extent visual techniques have been applied to support the former. Method: Over 83 primary studies indexed in major scientific repositories were identified by our search string in this SLR. Then, following existing best practices for secondary studies, we applied inclusion/exclusion criteria to select the most relevant works, extract their features and classify them. Results: We found that the most commonly used approaches to code smells detection are search-based (30.1%), and metric-based (24.1%). Most of the studies (83.1%) use open-source software, with the Java language occupying the first position (77.1%). In terms of code smells, God Class (51.8%), Feature Envy (33.7%), and Long Method (26.5%) are the most covered ones. Machine learning techniques are used in 35% of the studies. Around 80% of the studies only detect code smells, without providing visualization techniques. In visualization-based approaches several methods are used, such as: city metaphors, 3D visualization techniques. Conclusions: We confirm that the detection of CS is a non trivial task, and there is still a lot of work to be done in terms of: reducing the subjectivity associated with the definition and detection of CS; increasing the diversity of detected CS and of supported programming languages; constructing and sharing oracles and datasets to facilitate the replication of CS detection and visualization techniques validation experiments.Comment: submitted to ARC

    Code smells detection and visualization: A systematic literature review

    Get PDF
    Context: Code smells (CS) tend to compromise software quality and also demand more effort by developers to maintain and evolve the application throughout its life-cycle. They have long been cataloged with corresponding mitigating solutions called refactoring operations. Objective: This SLR has a twofold goal: the first is to identify the main code smells detection techniques and tools discussed in the literature, and the second is to analyze to which extent visual techniques have been applied to support the former. Method: Over 83 primary studies indexed in major scientific repositories were identified by our search string in this SLR. Then, following existing best practices for secondary studies, we applied inclusion/exclusion criteria to select the most relevant works, extract their features and classify them. Results: We found that the most commonly used approaches to code smells detection are search-based (30.1%), and metric-based (24.1%). Most of the studies (83.1%) use open-source software, with the Java language occupying the first position (77.1%). In terms of code smells, God Class (51.8%), Feature Envy (33.7%), and Long Method (26.5%) are the most covered ones. Machine learning techniques are used in 35% of the studies. Around 80% of the studies only detect code smells, without providing visualization techniques. In visualization-based approaches, several methods are used, such as city metaphors, 3D visualization techniques. Conclusions: We confirm that the detection of CS is a non-trivial task, and there is still a lot of work to be done in terms of: reducing the subjectivity associated with the definition and detection of CS; increasing the diversity of detected CS and of supported programming languages; constructing and sharing oracles and datasets to facilitate the replication of CS detection and visualization techniques validation experiments.info:eu-repo/semantics/acceptedVersio
    • …
    corecore