1,511 research outputs found

    Synthetic data generator for electric vehicle charging sessions : modeling and evaluation using real-world data

    Get PDF
    Electric vehicle (EV) charging stations have become prominent in electricity grids in the past few years. Their increased penetration introduces both challenges and opportunities; they contribute to increased load, but also offer flexibility potential, e.g., in deferring the load in time. To analyze such scenarios, realistic EV data are required, which are hard to come by. Therefore, in this article we define a synthetic data generator (SDG) for EV charging sessions based on a large real-world dataset. Arrival times of EVs are modeled assuming that the inter-arrival times of EVs follow an exponential distribution. Connection time for EVs is dependent on the arrival time of EV, and can be described using a conditional probability distribution. This distribution is estimated using Gaussian mixture models, and departure times can calculated by sampling connection times for EV arrivals from this distribution. Our SDG is based on a novel method for the temporal modeling of EV sessions, and jointly models the arrival and departure times of EVs for a large number of charging stations. Our SDG was trained using real-world EV sessions, and used to generate synthetic samples of session data, which were statistically indistinguishable from the real-world data. We provide both (i) source code to train SDG models from new data, and (ii) trained models that reflect real-world datasets

    Enabling Technologies for Smart Grid Integration and Interoperability of Electric Vehicles

    Get PDF

    Learning-based Predictive Control via Real-time Aggregate Flexibility

    Full text link
    Aggregators have emerged as crucial tools for the coordination of distributed, controllable loads. To be used effectively, an aggregator must be able to communicate the available flexibility of the loads they control, as known as the aggregate flexibility to a system operator. However, most of existing aggregate flexibility measures often are slow-timescale estimations and much less attention has been paid to real-time coordination between an aggregator and an operator. In this paper, we consider solving an online optimization in a closed-loop system and present a design of real-time aggregate flexibility feedback, termed the maximum entropy feedback (MEF). In addition to deriving analytic properties of the MEF, combining learning and control, we show that it can be approximated using reinforcement learning and used as a penalty term in a novel control algorithm -- the penalized predictive control (PPC), which modifies vanilla model predictive control (MPC). The benefits of our scheme are (1). Efficient Communication. An operator running PPC does not need to know the exact states and constraints of the loads, but only the MEF. (2). Fast Computation. The PPC often has much less number of variables than an MPC formulation. (3). Lower Costs. We show that under certain regularity assumptions, the PPC is optimal. We illustrate the efficacy of the PPC using a dataset from an adaptive electric vehicle charging network and show that PPC outperforms classical MPC.Comment: 13 pages, 5 figures, extension of arXiv:2006.1381

    Decision Support for Smart Grid Planning and Operation Considering Reliability

    Get PDF
    [ES] Esta tesis aporta contribuciones a los temas de los sistemas de energía y la movilidad eléctrica. Por lo tanto, se proponen soluciones innovadoras para la planificación de la red de distribución radial tradicional sin o con pocas unidades de recursos energéticos distribuidos, y para la planificación, operación, reconfiguración, y gestión de recursos energéticos en redes de distribución en media tensión considerando una alta penetración de los recursos energéticos distribuidos en el contexto de las redes inteligentes. Las preocupaciones sobre la disponibilidad de combustibles fósiles y el aumento de los efectos climático causados por su uso generalizado en la generación de electricidad han llevado a varias políticas e incentivos para atenuar estos problemas. Estas medidas contribuyeron a inversiones considerables en fuentes de energía renovables y motivaron muchas iniciativas de redes inteligentes. Aunque el panorama futuro de los sistemas eléctricos modernos parece muy prometedor, la integración a gran escala de fuentes de energía renovables de naturaleza intermitente, como la eólica y la fotovoltaica, plantea nuevos desafíos y limitaciones en la industria eléctrica actual. Hoy en día, el diseño de la red de distribución no está correctamente preparado para alojar una gran cantidad de fuentes de energía renovables distribuidas. Por lo tanto, los operadores del sistema de distribución reconocen la necesidad de cambiar el diseño de la red mediante la planificación y el refuerzo. A medida que aumenta la penetración de las fuentes de energía renovable, un agregador de energía puede proporcionar una generación y demanda altamente flexibles según lo requiere el paradigma de red inteligente. Además, esta entidad puede permitir lograr una alta integración de la oferta de energía renovable y aumentar el valor para los pequeños productores y consumidores que no pueden negociar directamente en el mercado mayorista. Sin embargo, la entidad agregadora de energía necesita herramientas adecuadas de apoyo a la decisión para superar los desafíos complejos y hacer frente a un gran número de recursos energéticos. Por lo tanto, la gestión de recursos energéticos es crucial para que la entidad agregadora de energía reduzca los costos de operación, aumente de los beneficios, reduzca la huella de carbono y mejore la estabilidad del sistema. En la perspectiva mundial actual, muchas personas se están mudando a las ciudades en busca de una mejor calidad de vida, contribuyendo de esta manera a la continua expansión de las áreas urbanas. En consecuencia, el sector de transportes está jugando un papel crítico en las emisiones de dióxido de carbono. Teniendo en cuenta esto, muchas ventajas medioambientales y económicas pueden ser obtenidas del cambio de los motores de combustión interna a los vehículos eléctricos. Sin embargo, este cambio contribuirá a una carga en la red de distribución, dando lugar a la posibilidad de congestión de la red. Por lo tanto, para facilitar la integración de la carga de los vehículos eléctricos en la red de distribución, un modelo de predicción del comportamiento del usuario de un vehículo eléctrico pode ser una herramienta muy importante. Además, el paradigma de la red inteligente está desafiando la estructura de control y operación convencional diseñado para redes de distribución pasivas. De este modo, la reconfiguración de la red de distribución será una estrategia esencial y significativa para el operador del sistema de distribución. En el estado del arte actual se identificó una falta de modelos, estrategias y herramientas de apoyo a la toma de decisiones adecuadas para los dominios de problemas de planificación, operación y gestión de recursos energéticos de redes de distribución en media tensión con una alta penetración de fuentes de energía distribuidas. Por lo tanto, surgen varios desafíos de investigación que llevan a la necesidad de desarrollar modelos nuevos e innovadores que aborden: a) el impacto de las fuentes de energía renovable y la variabilidad de la demanda en la planificación de la expansión a largo plazo, b) el problema de la gestión de los recursos energéticos a gran escala, teniendo en cuenta la demanda, las fuentes de energía renovables, los vehículos eléctricos y la variabilidad de los precios del mercado, c) el análisis de impacto de los precios de carga dinámicos de los vehículos eléctricos en la operación de la red de distribución y en el comportamiento del usuario del vehículo eléctrico. Además, en el contexto de la red de distribución de media tensión radial tradicional, también se verificó la necesidad de modelos innovadores para mejorar la confiabilidad a través de la identificación de nuevas inversiones en los componentes de la red. Por lo tanto, esta tesis propone soluciones innovadoras para hacer frente a todos estos vacíos y problemas. Para ese propósito, las contribuciones de la tesis, resultan en un innovador sistema de apoyo a la decisión llamado Advanced Decision Support Tool for Smart Grid Planning and Operation (SupporGrid). El SupporGrid se compone de un conjunto de modelos diversificados que juntos contribuyen a manejar la complejidad de la planificación tradicional de las redes de distribución radial (PlanTGrid), y para la planificación (PlanSGrid), operación (OperSGrid), y los problemas de gestión de recursos energéticos (ERMGrid) en redes de distribución de media tensión en el paradigma de red inteligente. PlanTGrid incluye un modelo de planificación de expansión para redes de distribución radial tradicionales para identificar la posibilidad de nuevas inversiones al costo mínimo. La planificación de la expansión a largo plazo de las redes de distribución en un contexto de red inteligente con una alta penetración de fuentes de energía renovables distribuidas y que trata las fuentes de incertidumbre se resuelve mediante el uso PlanSGrid. OperSGrid contiene una herramienta de simulación de viajes de los usuarios de los vehículos eléctricos funcionando en conjunto con un modelo de operación y reconfiguración que utiliza descomposición de Benders y precios marginales para comprender el impacto del precio de carga de energía dinámica en ambos lados: la red de distribución y el usuario de vehículo eléctrico. Para hacer frente a la gestión de recursos energéticos a gran escala con problemas de respuesta a la demanda y sistemas de almacenamiento de energía, así como con la variabilidad de la demanda, las fuentes de energía renovable, los vehículos eléctricos y el precio de mercado, ERMGrid incluye un modelo estocástico de dos etapas. Las metodologías desarrolladas para el sistema de soporte de decisiones se han probado y validado en escenarios realistas. Los resultados prometedores logrados en condiciones realistas respaldan la hipótesis de que las metodologías son adecuadas e innovadoras para la planificación de la red de distribución radial tradicional, y para la planificación, operación, reconfiguración y gestión de recursos energéticos a largo plazo de la red de distribución considerando alta penetración de recursos energéticos distribuidos y de vehículos eléctricos en el contexto de red inteligente. Los resultados prometedores logrados en condiciones realistas respaldan la hipótesis de que las metodologías son adecuadas e innovadoras para la planificación de la red de distribución radial tradicional, y para la planificación, operación, reconfiguración y gestión de recursos energéticos a largo plazo de la red de distribución considerando la alta distribución de recursos energéticos y la penetración de vehículos eléctricos. De hecho, este sistema de apoyo a la decisión mejorará el funcionamiento de las redes de distribución de media tensión, permitiendo ahorros para las partes interesadas

    Load Forecasting and Synthetic Data Generation for Smart Home Energy Management System

    Get PDF
    A number of recent trends, such as the increased power consumption in developed and developing countries, the dangers associated with greenhouse gases, the potential shortages of fossil fuels, and the increasing availability of solar and wind energy act as motivating factors for the development of more intelligent and efficient systems both on the power provider as well as the consumer side. One of the most important prerequisites for making efficient energy management decisions is the ability to predict energy production and consumption patterns. While long-term forecasting of average consumption had been extensively used to direct investments in the energy grid, short-term predictions of energy consumption became practical only recently. Most of the existing work in this domain operates at the level of individual households. However, the availability of historical power consumption data can be an issue due to concerns such as privacy, data size or data quality. Researchers have been provided with synthetic smart home energy management systems that mimic the statistical and functional properties of the actual smart grid in order to improve their access to public system models. Through developing time series to represent different operating conditions of these synthetic systems, the potential of artificial smart home energy management system applications will be further enhanced. The work described in this dissertation extends the ability to predict and control power consumption to the level of individual devices in the home. This work is made possible by several recent developments. Internet of things technologies that connect individual devices to the internet allows the remote tracking of energy consumption and the remote control and scheduling of the devices. At the same time, progress in artificial intelligence and machine learning techniques improve the accuracy of predictions. These components often form the basis of smart home energy management systems (HEMS). One of our insights that facilitates the prediction of the energy consumption of individual devices is that the history of consumption contains important information about future consumption. Thus, we propose to use a long short-term memory (LSTM) recurrent neural network for prediction. In a second contribution, we extend this model into a sequence-to-sequence model which uses several interconnected LSTM cells on both the input and the output sides. We show that these approaches produce better predictions compared to memoryless machine learning techniques. The prediction of energy consumption delivers maximum value when it is integrated with the active component of a HEMS. We design a reinforcement learning-based technique where a Q-learning model is trained offline based on the prediction results. This system is then validated only using real data from PV power generation and load consumption. Considering the scarcity of data among the smart grid users, in our third contribution, we propose the Variational Autoencoder Generative Adversarial Network (VAE-GAN) as a smart grid data generative model capable of learning various types of data distributions, such as electrical load consumption, PV power production and electric vehicles charging load consumption, and generating plausible sample data from the same distribution without first performing any pre-training analysis on the data. Our extensive experiments have shown the accuracy of our approach in synthesizing smart home datasets. There is a high degree of resemblance between the distribution of VAE-GAN synthetic data and the distribution of real data. The next step will be to incorporate Q-learning for offline optimization of HEMS using synthetic data and to test its performance with real test data

    Impact analysis of Photovoltaic Distributed Generation and Plug-In Electric Vehicles in a LV distribution network through the evaluation and application of the Non-Synthetic European LV Test System

    Get PDF
    In this work, an altered version of the Non-Synthetic European Low Voltage Test System, from Koirala et al.) is built. Distributed PV generation and PEV representative loads are implemented and simulated in a daily time series power flow analysis for different penetration levels.The results obtained from the stress test comply with the assertions of prior studies, with some exceptions. To accommodate a high PV penetration, the implementation of coordinated control in the grid is mandatory

    A review of tools, models and techniques for long-term assessment of distribution systems using OpenDSS and parallel computing

    Get PDF
    Many distribution system studies require long-term evaluations (e.g. for one year or more): Energy loss minimization, reliability assessment, or optimal rating of distributed energy resources should be based on long-term simulations of the distribution system. This paper summarizes the work carried out by the authors to perform long-term studies of large distribution systems using an OpenDSS-MATLAB environment and parallel computing. The paper details the tools, models, and procedures used by the authors in optimal allocation of distributed resources, reliability assessment of distribution systems with and without distributed generation, optimal rating of energy storage systems, or impact analysis of the solid state transformer. Since in most cases, the developed procedures were implemented for application in a multicore installation, a summary of capabilities required for parallel computing applications is also included. The approaches chosen for carrying out those studies used the traditional Monte Carlo method, clustering techniques or genetic algorithms. Custom-made models for application with OpenDSS were required in some studies: A summary of the characteristics of those models and their implementation are also included.Peer ReviewedPostprint (published version

    A novel complex system approach for the determination of renewable energy sources impact on electricity infrastructures

    Get PDF
    The increasing environmental awareness, associated with the increasing demand and price of fossil fuels, is leading to the implementation of novel energy models based on renewable energy sources (RES) and sustainable mobility. However, the actual physical and economic models on which power system management rules are based on, are not able to properly manage the high amount of unwanted power fluctuations introduced by RES power generation. For such reason, major issues has been pointed out in term of energy security and access, inspiring changes in methods and paradigms associated to energy supply management. Moreover, the transaction towards an emission free mobility must be based on the interaction between RES generation and Electric Vehicles (EV) mobility, pointing out the need of a new approach able to combine mobility and energy supply infrastructures. In order to describe and model power systems with an high amount of RES generation, is important to indicate that such systems are made by a great number of microscopical interacting elements which behave in a stochastic way. For this reason, these systems can not easily be described in a deterministic way, but must be described by a statistical representation of the system observables. In this thesis, a novel approach based on statistical mechanics methods is presented, able to model the impact of such sources over the system. By using such approach, has been possible to evaluate the possible impact of such sources in terms of power system stability and sustainable mobility
    corecore