495 research outputs found

    Coronary Artery Segmentation and Motion Modelling

    No full text
    Conventional coronary artery bypass surgery requires invasive sternotomy and the use of a cardiopulmonary bypass, which leads to long recovery period and has high infectious potential. Totally endoscopic coronary artery bypass (TECAB) surgery based on image guided robotic surgical approaches have been developed to allow the clinicians to conduct the bypass surgery off-pump with only three pin holes incisions in the chest cavity, through which two robotic arms and one stereo endoscopic camera are inserted. However, the restricted field of view of the stereo endoscopic images leads to possible vessel misidentification and coronary artery mis-localization. This results in 20-30% conversion rates from TECAB surgery to the conventional approach. We have constructed patient-specific 3D + time coronary artery and left ventricle motion models from preoperative 4D Computed Tomography Angiography (CTA) scans. Through temporally and spatially aligning this model with the intraoperative endoscopic views of the patient's beating heart, this work assists the surgeon to identify and locate the correct coronaries during the TECAB precedures. Thus this work has the prospect of reducing the conversion rate from TECAB to conventional coronary bypass procedures. This thesis mainly focus on designing segmentation and motion tracking methods of the coronary arteries in order to build pre-operative patient-specific motion models. Various vessel centreline extraction and lumen segmentation algorithms are presented, including intensity based approaches, geometric model matching method and morphology-based method. A probabilistic atlas of the coronary arteries is formed from a group of subjects to facilitate the vascular segmentation and registration procedures. Non-rigid registration framework based on a free-form deformation model and multi-level multi-channel large deformation diffeomorphic metric mapping are proposed to track the coronary motion. The methods are applied to 4D CTA images acquired from various groups of patients and quantitatively evaluated

    Segmentation d'images IRM du cerveau pour la construction d'un modèle anatomique destiné à la simulation bio-mécanique

    Get PDF
    Comment obtenir des données anatomiques pendant une neurochirurgie ? a été ce qui a guidé le travail développé dans le cadre de cette thèse. Les IRM sont actuellement utilisées en amont de l'opération pour fournir cette information, que ce soit pour le diagnostique ou pour définir le plan de traitement. De même, ces images pre-opératoires peuvent aussi être utilisées pendant l'opération, pour pallier la difficulté et le coût des images per-opératoires. Pour les rendre utilisables en salle d'opération, un recalage doit être effectué avec la position du patient. Cependant, le cerveau subit des déformations pendant la chirurgie, phénomène appelé Brain Shift, ce qui altère la qualité du recalage. Pour corriger cela, d'autres données per-opératoires peuvent être acquises, comme la localisation de la surface corticale, ou encore des images US localisées en 3D. Ce nouveau recalage permet de compenser ce problème, mais en partie seulement. Ainsi, des modèles mécaniques ont été développés, entre autres pour apporter des solutions à l'amélioration de ce recalage. Ils permettent ainsi d'estimer les déformations du cerveau. De nombreuses méthodes existent pour implémenter ces modèles, selon différentes lois de comportement et différents paramètres physiologiques. Dans tous les cas, cela requiert un modèle anatomique patient-spécifique. Actuellement, ce modèle est obtenu par contourage manuel, ou quelquefois semi-manuel. Le but de ce travail de thèse est donc de proposer une méthode automatique pour obtenir un modèle du cerveau adapté sur l'anatomie du patient, et utilisable pour une simulation mécanique. La méthode implémentée se base sur les modèles déformables pour segmenter les structures anatomiques les plus pertinentes dans une modélisation bio-mécanique. En effet, les membranes internes du cerveau sont intégrées: falx cerebri and tentorium cerebelli. Et bien qu'il ait été démontré que ces structures jouent un rôle primordial, peu d'études les prennent en compte. Par ailleurs, la segmentation résultante de notre travail est validée par comparaison avec des données disponibles en ligne. De plus, nous construisons un modèle 3D, dont les déformations seront simulées en utilisant une méthode de résolution par Éléments Finis. Ainsi, nous vérifions par des expériences l'importance des membranes, ainsi que celle des paramètres physiologiques.The general problem that motivates the work developed in this thesis is: how to obtain anatomical information during a neurosurgery?. Magnetic Resonance (MR) images are usually acquired before the surgery to provide anatomical information for diagnosis and planning. Also, the same images are commonly used during the surgery, because to acquire MRI images in the operating room is complex and expensive. To make these images useful inside the operating room, a registration between them and the patient's position has to be processed. The problem is that the brain suffers deformations during the surgery, in a process called brain shift, degrading the quality of registration. To correct this, intra-operative information may be used, for example, the position of the brain surface or US images localized in 3D. The new registration will compensate this problem, but only to a certain extent. Mechanical models of the brain have been developed as a solution to improve this registration. They allow to estimate brain deformation under certain boundary conditions. In the literature, there are a variety of methods for implementing these models, different equation laws used for continuum mechanic, and different reported mechanical properties of the tissues. However, a patient specific anatomical model is always required. Currently, most mechanical models obtain the associated anatomical model by manual or semi-manual segmentation. The aim of this thesis is to propose and implement an automatic method to obtain a model of the brain fitted to the patient's anatomy and suitable for mechanical modeling. The implemented method uses deformable model techniques to segment the most relevant anatomical structures for mechanical modeling. Indeed, the internal membranes of the brain are included: falx cerebri and tentorium cerebelli. Even though the importance of these structures is stated in the literature, only a few of publications include them in the model. The segmentation obtained by our method is assessed using the most used online databases. In addition, a 3D model is constructed to validate the usability of the anatomical model in a Finite Element Method (FEM). And the importance of the internal membranes and the variation of the mechanical parameters is studied.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    A model-based cortical parcellation scheme for high-resolution 7 Tesla MRI data

    No full text

    Intraoperative, Quantitative, and Non-Contact Blood Volume Flow Measurement via Indocyanine Green Fluorescence Angiography

    Get PDF
    In vielen Fällen unterziehen sich Patienten einer Revaskularisationsoperation wenn sie an einer zerebrovaskulären Erkrankung leiden, die eine Hypoperfusion des Gehirns verursacht. Dieser chirurgische Eingriff wird häufig als offene Operation durchgeführt und hat das Ziel, die Gefäßfunktion, insbesondere den Blutfluss, wiederherzustellen. Hierzu wird eine Anastomose (Verbindung von Arterien) angelegt, um den Fluss zu einem hypoperfundierten Gehirnareal zu erhöhen. In ungefähr 10% der Eingriffe treten nach der Operation Komplikationen auf, die zum Teil auf eine unzureichende Durchflusssteigerung zurückgeführt werden. Daher sollte der Blutfluss intraoperativ überprüft werden, um die Qualität des Eingriffs im Operationssaal zu beurteilen und schnell eingreifen zu können. Damit könnte ein negativer Ausgang für den Patienten verhindert werden. Der derzeitige Stand der Technik in der intraoperativen und quantitativen Blutflussmessung ist die Nutzung der Ultraschall-Transitzeit-Durchflusssonde. Sie gibt einen quantitativen Flusswert an, muss jedoch das Gefäß umschließen. Dies ist einerseits umständlich für den Chirurgen und andererseits birgt es das Risiko von Kontaminationen, Gefäßquetschungen und der Gefäßruptur. Eine alternative Methode ist die Indocyaningrün (ICG) Fluoreszenzangiographie (FA), welche eine kamerabasierte Methode ist. Sie ist der Stand der Technik in der hochauflösenden anatomischen Visualisierung des Situs und kann zusätzlich dem Chirurgen eine qualitative funktionelle Darstellung der Gefäße im Sichtfeld liefern. Der Stand der Wissenschaft zur Quantifizierung des Blutflusses mittels ICG-FA konnten bisher keine verlässlichen Fluss- werte liefern. Die vorliegende Arbeit analysiert und verbessert die Eignung von ICG FA zu Bereitstellung von verlässlichen und quantitativen Blutflusswerten, indem 1. geklärt wird, wie akkurat die Messung durchgeführt werden kann. 2. Methoden zur Verbesserung der Genauigkeit entwickelt werden. 3. die Existenz eines systematischen Fehlers abgeleitet wird. 4. eine Methode zur Kompensation des systematischen Fehlers entwickelt wird. 5. ein Algorithmus zur Verarbeitung der eingehenden Videodaten für eine Ausgabe eines Durchflusswertes bereitgestellt wird. 6. die Validierung der vorgeschlagenen Methoden und des Arbeitsablaufs in einer ex vivo und in vivo Studie durchgeführt wird. Die in dieser Arbeit vorgeschlagene Messung basiert auf dem systemic mean transit time theorem für Systeme mit einem Eingang und einem Ausgang. Um den Fluss zu berechnen müssen die Transitzeit eines ICG-Bolus für eine zu bestimmenden Strecke und die Querschnittsfläche des Gefäßes ermittelt werden. Es wurden Methoden entwickelt, um den Blutvolumenstrom zu messen und um Fehlerquellen bei dieser Messung der einzelnen Parameter zu identifizieren, quantifizieren und reduzieren. Die statistischen Fehler bei der Messung der Transitstrecke und der Transitzeit des ICG- Bolus sowie der Querschnittsfläche des Gefäßes werden in der Forschung oft vernachlässigt. In dieser Arbeit wurden die Fehler mit Hilfe von in silico Modellen quantifiziert. Es zeigte sich, dass der Fehler zu groß für eine zuverlässige Blutflussmessung ist und daher Methoden zu seiner Reduzierung benötigt werden. Um den Fehler bei der Längenmessung deutlich zu reduzieren, wurde eine Methode vorgestellt, welche die diskrete Mittellinie wieder in eine kontinuierliche überführt. Dabei wird der Fehler in der Längenmessung signifikant reduziert und der Fehler von der räumlichen Orientierung der Struktur entkoppelt. In ähnlicher Weise wurde eine Methode vorgestellt, welche die gemessenen diskreten Indikatorverdünnungskurven (IDCs) ebenso in kontinuierliche überführt, um den Fehler in der Laufzeitmessung des ICG-Bolus zu reduzieren. Der propagierte statistische Fehler der Blutflussmessung wurde auf einen akzeptablen und praktikablen Wert von 20 % bis 30 % reduziert. Die Präsenz eines systematischen Fehlers bei der optischen Messung des Blutflusses wurde identifiziert und aus der Definition des Volumenflusses theoretisch abgeleitet. Folgend wird eine Methode zur Kompensation des Fehlers vorgestellt. Im ersten Schritt wird eine Fluid-Strömungssimulation genutzt, um die räumlich-zeitliche Konzentration des ICG in einem Blutgefäß zu berechnen. Anschließend wird die Konzentration an ein neu entwickeltes Fluoreszenz-Monte-Carlo-Multizylinder (FMCMC) Modell übergeben, das die Ausbreitung von Photonen in einem Gefäß simuliert. Dabei wird der Ort der Fluoreszenzereignisse der emittierten Photonen ermittelt und der systematische Fehler bestimmt. Dies ermöglicht die Kompensation des systematischen Fehlers. Es zeigte sich, dass dieser Fehler unabhängig von dem Volumenfluss ist, solange die Strömung laminar ist, aber abhängig vom Durchmesser des Gefäßes und dem Zeitpunkt der Messung. Die Abhängigkeit vom Durchmesser ist reduziert bei Messungen zu einem früheren Zeitpunkt. Daher ist es vorteilhaft, die erste Ankunft des ICG-Bolus zur Bestimmung der Transitzeit zu verwenden, um den Einfluss des Durchmessers auf den Fehler zu verringern und somit die Messung robuster durchzuführen. Um die Genauigkeit der Messung in einem Experiment zu beweisen, wurde ein ex vivo Experiment unter Verwendung von Schweineblut und Kaninchen Aorten konzipiert und durchgeführt. Es zeigte sich, dass der durch den vorgeschlagenen Algorithmus ermittelte Fluss mit der Referenzmessung (einem industriellem Durchflussmesser) übereinstimmt. Die statistische Streuung der gemessenen Flussdaten durch den Algorithmus stimmte mit der zuvor ermittelten statistischen Fehlerspanne überein, was den in silico Ansatz validiert. Es wurde eine retrospektive in vivo Studie an Menschen durchgeführt, die sich einer extrakraniellen-zu-intrakraniellen (EC-IC) Bypass Operation unterzogen hatten. Die Analyse der FA-Daten ergab eine gute Übereinstimmung mit der klinischen Referenzmethode, jedoch mit dem großen Vorteil, dass kein Kontakt zum Gewebe erforderlich war. Zusätzlich wurde gezeigt, dass simultan Flusswerte für mehrere Gefäße im Sichtfeld der Kamera gemessen werden können. Die vorgestellten Ergebnisse sind ein Proof of Concept für die Eignung der vorgestellten intraoperativen, quantitativen und optischen Messung des Blutvolumenstroms mittels ICG FA. Diese Arbeit ebnet den Weg für den klinischen Einsatz dieser Methode in Ergänzung zum aktuellen klinischen Stand der Technik. Sie könnte zukünftig dem Chirurgen eine neuartige Messung des Blutvolumenstroms zur Verfügung stellen und dabei potentiell das Risiko einer Komplikation reduzieren und damit das Wohl der Patienten verbessern
    corecore