300,272 research outputs found

    Transparency in International Investment Law: The Good, the Bad, and the Murky

    Get PDF
    How transparent is the international investment law regime, and how transparent should it be? Most studies approach these questions from one of two competing premises. One camp maintains that the existing regime is opaque and should be made completely transparent; the other finds the regime sufficiently transparent and worries that any further transparency reforms would undermine the regime’s essential functioning. This paper explores the tenability of these two positions by plumbing the precise contours of transparency as an overarching norm within international investment law. After defining transparency in a manner befitting the decentralized nature of the regime, the paper identifies international investment law’s key transparent, semi-transparent, and non-transparent features. It underscores that these categories do not necessarily map onto prevailing normative judgments concerning what might constitute good, bad, and murky transparency practices. The paper then moves beyond previous analyses by suggesting five strategic considerations that should factor into future assessments of whether and how particular aspects of the regime should be rendered more transparent. It concludes with a tentative assessment of the penetration, recent evolution, and likely trajectory of transparency principles within the contemporary international investment law regime

    Privacy as a Public Good

    Get PDF
    Privacy is commonly studied as a private good: my personal data is mine to protect and control, and yours is yours. This conception of privacy misses an important component of the policy problem. An individual who is careless with data exposes not only extensive information about herself, but about others as well. The negative externalities imposed on nonconsenting outsiders by such carelessness can be productively studied in terms of welfare economics. If all relevant individuals maximize private benefit, and expect all other relevant individuals to do the same, neoclassical economic theory predicts that society will achieve a suboptimal level of privacy. This prediction holds even if all individuals cherish privacy with the same intensity. As the theoretical literature would have it, the struggle for privacy is destined to become a tragedy. But according to the experimental public-goods literature, there is hope. Like in real life, people in experiments cooperate in groups at rates well above those predicted by neoclassical theory. Groups can be aided in their struggle to produce public goods by institutions, such as communication, framing, or sanction. With these institutions, communities can manage public goods without heavy-handed government intervention. Legal scholarship has not fully engaged this problem in these terms. In this Article, we explain why privacy has aspects of a public good, and we draw lessons from both the theoretical and the empirical literature on public goods to inform the policy discourse on privacy

    Revolutionaries and spies: Spy-good and spy-bad graphs

    Get PDF
    We study a game on a graph GG played by rr {\it revolutionaries} and ss {\it spies}. Initially, revolutionaries and then spies occupy vertices. In each subsequent round, each revolutionary may move to a neighboring vertex or not move, and then each spy has the same option. The revolutionaries win if mm of them meet at some vertex having no spy (at the end of a round); the spies win if they can avoid this forever. Let σ(G,m,r)\sigma(G,m,r) denote the minimum number of spies needed to win. To avoid degenerate cases, assume |V(G)|\ge r-m+1\ge\floor{r/m}\ge 1. The easy bounds are then \floor{r/m}\le \sigma(G,m,r)\le r-m+1. We prove that the lower bound is sharp when GG has a rooted spanning tree TT such that every edge of GG not in TT joins two vertices having the same parent in TT. As a consequence, \sigma(G,m,r)\le\gamma(G)\floor{r/m}, where γ(G)\gamma(G) is the domination number; this bound is nearly sharp when γ(G)m\gamma(G)\le m. For the random graph with constant edge-probability pp, we obtain constants cc and cc' (depending on mm and pp) such that σ(G,m,r)\sigma(G,m,r) is near the trivial upper bound when r<clnnr<c\ln n and at most cc' times the trivial lower bound when r>clnnr>c'\ln n. For the hypercube QdQ_d with drd\ge r, we have σ(G,m,r)=rm+1\sigma(G,m,r)=r-m+1 when m=2m=2, and for m3m\ge 3 at least r39mr-39m spies are needed. For complete kk-partite graphs with partite sets of size at least 2r2r, the leading term in σ(G,m,r)\sigma(G,m,r) is approximately kk1rm\frac{k}{k-1}\frac{r}{m} when kmk\ge m. For k=2k=2, we have \sigma(G,2,r)=\bigl\lceil{\frac{\floor{7r/2}-3}5}\bigr\rceil and \sigma(G,3,r)=\floor{r/2}, and in general 3r2m3σ(G,m,r)(1+1/3)rm\frac{3r}{2m}-3\le \sigma(G,m,r)\le\frac{(1+1/\sqrt3)r}{m}.Comment: 34 pages, 2 figures. The most important changes in this revision are improvements of the results on hypercubes and random graphs. The proof of the previous hypercube result has been deleted, but the statement remains because it is stronger for m<52. In the random graph section we added a spy-strategy resul
    corecore