171 research outputs found

    Research through Design of Bendable Interactive Playing Cards

    Get PDF
    Ph.D

    A Corpus-assisted Discourse Analysis of Music-related Practices Discussed within Chipmusic.org

    Get PDF
    abstract: This study examined discussion forum posts within a website dedicated to a medium and genre of music (chiptunes) with potential for music-centered making, a phrase I use to describe maker culture practices that revolve around music-related purposes. Three research questions guided this study: (1) What chiptune-related practices did members of chipmusic.org discuss between December 30th, 2009 and November 13th, 2017? (2) What do chipmusic.org discussion forum posts reveal about the multidisciplinary aspects of chiptunes? (3) What import might music-centered making evident within chipmusic.org discussion forum posts hold for music education? To address these research questions, I engaged in corpus-assisted discourse analysis tools and techniques to reveal and analyze patterns of discourse within 245,098 discussion forum posts within chipmusic.org. The analysis cycle consisted of (a) using corpus analysis techniques to reveal patterns of discourse across and within data consisting of 10,892,645 words, and (b) using discourse analysis techniques for a close reading of revealed patterns. Findings revealed seven interconnected themes of chiptune-related practices: (a) composition practices, (b) performance practices, (c) maker practices, (d) coding practices, (e) entrepreneurial practices, (f), visual art practices, and (g) community practices. Members of chipmusic.org primarily discussed composing and performing chiptunes on a variety of instruments, as well as through retro computer and video game hardware. Members also discussed modifying and creating hardware and software for a multitude of electronic devices. Some members engaged in entrepreneurial practices to promote, sell, buy, and trade with other members. Throughout each of the revealed themes, members engaged in visual art practices, as well as community practices such as collective learning, collaborating, constructive criticism, competitive events, and collective efficacy. Findings suggest the revealed themes incorporated practices from a multitude of academic disciplines or fields of study for music-related purposes. However, I argue that many of the music-related practices people discussed within chipmusic.org are not apparent within music education discourse, curricula, or standards. I call for an expansion of music education discourse and practices to include additional ways of being musical through practices that might borrow from multiple academic disciplines or fields of study for music-related purposes.Dissertation/ThesisDoctoral Dissertation Music Education 201

    Investigating New Forms of Single-handed Physical Phone Interaction with Finger Dexterity

    Get PDF
    With phones becoming more powerful and such an essential part of our lives, manufacturers are creating new device forms and interactions to better support even more diverse functions. A common goal is to enable a larger input space and expand the input vocabulary using new physical phone interactions other than touchscreen input. This thesis explores how utilizing our hand and finger dexterity can expand physical phone interactions. To understand how we can physically manipulate a phone using the fine motor skills of finger, we identify and evaluate single-handed "dexterous gestures". Four manipulations are defined: shift, spin (yaw axis), rotate (roll axis) and flip (pitch axis), with a formative survey showing all except flip have been performed for various reasons. A controlled experiment examines the speed, behaviour, and preference of manipulations in the form of dexterous gestures, by considering two directions and two movement magnitudes. Using a heuristic recognizer for spin, rotate, and flip, a one-week usability experiment finds increased practice and familiarity improve the speed and comfort of dexterous gestures. With the confirmation that users can loosen their grip and perform gestures with finger dexterity, we investigate the performance of one-handed touch input on the side of a mobile phone. An experiment examines grip change and subjective preference when reaching for side targets using different fingers. Two following experiments examine taps and flicks using the thumb and index finger in a new two-dimensional input space. We simulate a side-touch sensor with a combination of capacitive sensing and motion tracking to distinguish touches on the lower, middle, or upper edges. We further focus on physical phone interaction with a new phone form factor by exploring and evaluating single-handed folding interactions suitable for "modern flip phones": smartphones with a bendable full screen touch display. Three categories of interactions are identified: only-fold, touch-enhanced fold, and fold-enhanced touch; in which gestures are created using fold direction, fold magnitude, and touch position. A prototype evaluation device is built to resemble current flip phones, but with a modified spring system to enable folding in both directions. A study investigates performance and preference for 30 fold gestures, revealing which are most promising. Overall, our exploration shows that users can loosen their grip to physically interact with phones in new ways, and these interactions could be practically integrated into daily phone applications

    CGAMES'2009

    Get PDF

    Digital fabrication of custom interactive objects with rich materials

    Get PDF
    As ubiquitous computing is becoming reality, people interact with an increasing number of computer interfaces embedded in physical objects. Today, interaction with those objects largely relies on integrated touchscreens. In contrast, humans are capable of rich interaction with physical objects and their materials through sensory feedback and dexterous manipulation skills. However, developing physical user interfaces that offer versatile interaction and leverage these capabilities is challenging. It requires novel technologies for prototyping interfaces with custom interactivity that support rich materials of everyday objects. Moreover, such technologies need to be accessible to empower a wide audience of researchers, makers, and users. This thesis investigates digital fabrication as a key technology to address these challenges. It contributes four novel design and fabrication approaches for interactive objects with rich materials. The contributions enable easy, accessible, and versatile design and fabrication of interactive objects with custom stretchability, input and output on complex geometries and diverse materials, tactile output on 3D-object geometries, and capabilities of changing their shape and material properties. Together, the contributions of this thesis advance the fields of digital fabrication, rapid prototyping, and ubiquitous computing towards the bigger goal of exploring interactive objects with rich materials as a new generation of physical interfaces.Computer werden zunehmend in Geräten integriert, mit welchen Menschen im Alltag interagieren. Heutzutage basiert diese Interaktion weitgehend auf Touchscreens. Im Kontrast dazu steht die reichhaltige Interaktion mit physischen Objekten und Materialien durch sensorisches Feedback und geschickte Manipulation. Interfaces zu entwerfen, die diese Fähigkeiten nutzen, ist allerdings problematisch. Hierfür sind Technologien zum Prototyping neuer Interfaces mit benutzerdefinierter Interaktivität und Kompatibilität mit vielfältigen Materialien erforderlich. Zudem sollten solche Technologien zugänglich sein, um ein breites Publikum zu erreichen. Diese Dissertation erforscht die digitale Fabrikation als Schlüsseltechnologie, um diese Probleme zu adressieren. Sie trägt vier neue Design- und Fabrikationsansätze für das Prototyping interaktiver Objekte mit reichhaltigen Materialien bei. Diese ermöglichen einfaches, zugängliches und vielseitiges Design und Fabrikation von interaktiven Objekten mit individueller Dehnbarkeit, Ein- und Ausgabe auf komplexen Geometrien und vielfältigen Materialien, taktiler Ausgabe auf 3D-Objektgeometrien und der Fähigkeit ihre Form und Materialeigenschaften zu ändern. Insgesamt trägt diese Dissertation zum Fortschritt der Bereiche der digitalen Fabrikation, des Rapid Prototyping und des Ubiquitous Computing in Richtung des größeren Ziels, der Exploration interaktiver Objekte mit reichhaltigen Materialien als eine neue Generation von physischen Interfaces, bei

    Photodetectors based on low-dimensional materials and hybrid systems

    Get PDF
    Premi extraordinari doctorat UPC curs 2015-2016, àmbit de CiènciesIn the last decade, two-dimensional (2D) materials have attracted attention both in the nascent field of flexible nanotechnology as well as in more conventional semiconductor technol-ogies. Within the rapidly expanding portfolio of 2D materials, the group of semiconducting transition metal dichalcogenides (TMDCs) has emerged as an intriguing candidate for various optoelectronic applications. The atomically thin profile, favorable bandgap and outstanding electronic properties of TMDCs are unique features that can be explored and applied in novel photodetecting platforms. This thesis presents highly sensitive two-dimensional phototransistors made of sub-nanometre thick TMDC channels. Firstly, an encapsulation route is developed to address the detrimental and, to date, uncontrollable impact of atmospheric adsorbates, which severely deteriorate detector performance. The passivation scheme improves the transport properties of TMDCs, leading to high photoconductive gain with gate dependent responsivity of 10 -10^4 A/W throughout the visible, and temporal response down to 10 ms, which is suitable for imaging applications. The atomic device thickness yields ultra-low dark current operation and record detectivity of 10^11 - 10^12 Jones for TMDC-based detectors is achieved. The use of monolayer TMDCs, however, has disadvantages like limited spectral absorption due to the bandgap and limited absorption efficiency. In order to increase the absorption and to extend the spectral coverage, TMDC channels are covered with colloidal quantum dots to make hybrid phototransistors. This compelling synergy combines strong and size-tunable light absorption within the QD film, efficient charge separation at the TMDC-QD interface and fast carrier transport through the 2D channel. This results in large gain of 10^6 electrons per absorbed photon and creates the basis for extremely sensitive light sensing. Colloidal quan-tum dots are an ideal sensitizer, because their solution-processing and facile implementation on arbitrary substrates allows for low-cost fabrication of hybrid TMDC-QD devices. Moreover, the custom tailored bandgap of quantum dots provides the photodetector with wide spectral tunability. For photodetection in the spectral window of NIR/SWIR, which is still dominated by expensive and complex epitaxy-based technologies, these hybrid detectors have the potential to favorably compete with commercially available systems. The interface of the TMDC-QD hybrid is of paramount importance for sensitive detector operation. A high density of trap states at the interface is shown to be responsible for inefficient gate-control over channel conductivity, which leads to high dark currents. To maintain the unique electrical field-effect modulation in TMDCs upon deposition of colloidal quantum dots, a passivation route of the interface with semiconducting metal-oxide films is developed. The buffer-layer material is selected such that charge transfer from QDs into the channel is favored. The retained field-effect modulation with a large on/off ratio allows operation of the phototransistor at significantly lower dark currents than non-passivated hybrids. A TMDC-QD phototransistor with an engineered interface that exhibits detectivity of 10^12 - 10^13 Jones and response times of 12 ms and less is reported. In summary, this work showcases prototype photodetectors made of encapsulated 2D TMDCs and TMDC-QD hybrids. Plain TMDC-detectors have potential for application as flexible and semi-transparent detector platforms with high sensitivity in the visible. The hybrid TMDC-QD device increases its spectral selectivity to the NIR/SWIR due to the variable absorption of the sensitizing quantum dots and reaches compelling performance thanks to im-proved light-matter interaction and optimized photocarrier generation.En la última década ha surgido un gran interés por los materiales bidimensionales (2D) tanto para las tecnologías emergentes de dispositivos flexibles, como para las tecnologías de semiconductores tradicionales. Dentro del creciente catálogo de materiales 2D, los semiconductores basados en dicalcogenuros de metales de transición (DCMTs) han surgido como candidatos para aplicaciones optoelectrónicas. Sus características únicas, tales como grosor atómico, banda prohibida y propiedades electrónicas pueden ser examinadas y aplicadas en nuevas plataformas de fotodetección. En esta tesis se presentan nuevos fototransistores bidimensionales ultrasensibles basados en canales de DCMTs subnanométricos. Se presenta una ruta de encapsulación para intentar solucionar el impacto negativo, e incontrolable hasta la fecha, producido por la adsorción de sustancias atmosféricas que degradan el funcionamiento de los detectores. Este proceso mejora el transporte en los DCMTs dando lugar a una gran ganancia fotoconductora, una respuesta, dependiente de la tensión aplicada en el gate, de 10-10^4 A/W en el visible y una respuesta temporal de tan solo 10 ms, todo ello adecuado para aplicaciones de imagen. El grosor atómico de los dispositivos da lugar a corrientes de oscuridad muy bajas y una detectividad de 10^11-10^12 Jones. Sin embargo, el uso de monocapas de DCMTs presenta ciertas desventajas como por ejem-plo una eficiencia en la absorción baja. Con el fin de mejorar la absorción, los canales de DCMTs se han recubierto con puntos cuánticos (QDs) para fabricar fototransistores híbridos. Esta sinergia combina la alta absorción de los QDs, una eficiente separación de cargas en la interfaz DCMT-QD y un rápido transporte de cargas a través del canal 2D. Todo esto resulta en una ganancia de 10^6 electrones por fotón absorbido y crea la base para sensores de luz extremadamente sensibles. Los puntos cuánticos coloidales son sensibizadores ideales ya que su procesado en disolución y su fácil incorporación sobre cualquier sustrato permiten la fabricación de sistemas híbridos DCMT-QD a bajo coste. Además, la posibilidad de modifi-car la banda prohibida, ofrecida por los QDs, proporciona al fotodetector una amplia respuesta espectral. Para fotodetección en la ventana espectral del infrarrojo cercano (NIR/SWIR), estos detectores híbridos presentan el potencial de competir favorablemente con los sistemas comerciales disponibles. La interfaz entre el híbrido DCMT-QD es de la mayor importancia para la sensibilidad del detector. Se ha demostrado que una alta densidad de trampas en la interfaz es la responsable del ineficiente control mediante el gate de la conductividad del canal, dando lugar a corrientes de oscuridad muy altas. Para mantener la excepcional modulación de efecto campo aún después de la deposición de los QDs, se ha desarrollado una ruta de pasivación de la interfaz con óxidos metálicos semiconductores. El material de esta capa amortiguadora (buffer) es seleccionado de tal manera que permita la transferencia de cargas desde los puntos cuánticos hasta el canal DCMT. Esto retiene la modulación de efecto campo con una relación encendido/apagado muy alta, permitiendo el funcionamiento del fototransistor con corrientes de oscuridad significativamente menores que las de los híbridos sin pasivar. Así, se presenta un fototransistor híbrido DCMT-QD, con una interfaz cuidadosamente diseñada, que exhibe una detectividad de 10^12-10^13 Jones. En resumen, este trabajo presenta unos prototipos de fotodetectores basados en DCMT 2D encapsulados y en híbridos DCMT-QD. Los fotodetectores basados en DCMT simples presentan potencial para su aplicación en detectores flexibles y semitransparentes, con gran sensibilidad en el visible. Los híbridos DCMT-QD amplían la selectividad espectral al infrarrojo cercano gracias a la absorción variable ofrecida por los puntos cuánticos y alcanzan un muy interesante rendimiento gracias a una mejor interacción luz-materia.Award-winningPostprint (published version

    Armstrong Flight Research Center Research Technology and Engineering 2017

    Get PDF
    I am delighted to present this report of accomplishments at NASA's Armstrong Flight Research Center. Our dedicated innovators possess a wealth of performance, safety, and technical capabilities spanning a wide variety of research areas involving aircraft, electronic sensors, instrumentation, environmental and earth science, celestial observations, and much more. They not only perform tasks necessary to safely and successfully accomplish Armstrong's flight research and test missions but also support NASA missions across the entire Agency. Armstrong's project teams have successfully accomplished many of the nation's most complex flight research projects by crafting creative solutions that advance emerging technologies from concept development and experimental formulation to final testing. We are developing and refining technologies for ultra-efficient aircraft, electric propulsion vehicles, a low boom flight demonstrator, air launch systems, and experimental x-planes, to name a few. Additionally, with our unique location and airborne research laboratories, we are testing and validating new research concepts. Summaries of each project highlighting key results and benefits of the effort are provided in the following pages. Technology areas for the projects include electric propulsion, vehicle efficiency, supersonics, space and hypersonics, autonomous systems, flight and ground experimental test technologies, and much more. Additional technical information is available in the appendix, as well as contact information for the Principal Investigator of each project. I am proud of the work we do here at Armstrong and am pleased to share these details with you. We welcome opportunities for partnership and collaboration, so please contact us to learn more about these cutting-edge innovations and how they might align with your needs

    Emerging technologies for learning report (volume 3)

    Get PDF

    Biosensing and Actuation—Platforms Coupling Body Input-Output Modalities for Affective Technologies

    Get PDF
    Research in the use of ubiquitous technologies, tracking systems and wearables within mental health domains is on the rise. In recent years, affective technologies have gained traction and garnered the interest of interdisciplinary fields as the research on such technologies matured. However, while the role of movement and bodily experience to affective experience is well-established, how to best address movement and engagement beyond measuring cues and signals in technology-driven interactions has been unclear. In a joint industry-academia effort, we aim to remodel how affective technologies can help address body and emotional self-awareness. We present an overview of biosignals that have become standard in low-cost physiological monitoring and show how these can be matched with methods and engagements used by interaction designers skilled in designing for bodily engagement and aesthetic experiences. Taking both strands of work together offers unprecedented design opportunities that inspire further research. Through first-person soma design, an approach that draws upon the designer’s felt experience and puts the sentient body at the forefront, we outline a comprehensive work for the creation of novel interactions in the form of couplings that combine biosensing and body feedback modalities of relevance to affective health. These couplings lie within the creation of design toolkits that have the potential to render rich embodied interactions to the designer/user. As a result we introduce the concept of “orchestration”. By orchestration, we refer to the design of the overall interaction: coupling sensors to actuation of relevance to the affective experience; initiating and closing the interaction; habituating; helping improve on the users’ body awareness and engagement with emotional experiences; soothing, calming, or energising, depending on the affective health condition and the intentions of the designer. Through the creation of a range of prototypes and couplings we elicited requirements on broader orchestration mechanisms. First-person soma design lets researchers look afresh at biosignals that, when experienced through the body, are called to reshape affective technologies with novel ways to interpret biodata, feel it, understand it and reflect upon our bodies
    corecore