2,645 research outputs found

    The prospects for mathematical logic in the twenty-first century

    Get PDF
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.Comment: Association for Symbolic Logi

    Conditionals and modularity in general logics

    Full text link
    In this work in progress, we discuss independence and interpolation and related topics for classical, modal, and non-monotonic logics

    Generic Automorphisms and Green Fields

    Full text link
    We show that the generic automorphism is axiomatisable in the green field of Poizat (once Morleyised) as well as in the bad fields which are obtained by collapsing this green field to finite Morley rank. As a corollary, we obtain "bad pseudofinite fields" in characteristic 0. In both cases, we give geometric axioms. In fact, a general framework is presented allowing this kind of axiomatisation. We deduce from various constructibility results for algebraic varieties in characteristic 0 that the green and bad fields fall into this framework. Finally, we give similar results for other theories obtained by Hrushovski amalgamation, e.g. the free fusion of two strongly minimal theories having the definable multiplicity property. We also close a gap in the construction of the bad field, showing that the codes may be chosen to be families of strongly minimal sets.Comment: Some minor changes; new: a result of the paper (Cor 4.8) closes a gap in the construction of the bad fiel

    Expansions of MSO by cardinality relations

    Full text link
    We study expansions of the Weak Monadic Second Order theory of (N,<) by cardinality relations, which are predicates R(X1,...,Xn) whose truth value depends only on the cardinality of the sets X1, ...,Xn. We first provide a (definable) criterion for definability of a cardinality relation in (N,<), and use it to prove that for every cardinality relation R which is not definable in (N,<), there exists a unary cardinality relation which is definable in (N,<,R) and not in (N,<). These results resemble Muchnik and Michaux-Villemaire theorems for Presburger Arithmetic. We prove then that + and x are definable in (N,<,R) for every cardinality relation R which is not definable in (N,<). This implies undecidability of the WMSO theory of (N,<,R). We also consider the related satisfiability problem for the class of finite orderings, namely the question whether an MSO sentence in the language {<,R} admits a finite model M where < is interpreted as a linear ordering, and R as the restriction of some (fixed) cardinality relation to the domain of M. We prove that this problem is undecidable for every cardinality relation R which is not definable in (N,<).Comment: to appear in LMC

    Defining Recursive Predicates in Graph Orders

    Full text link
    We study the first order theory of structures over graphs i.e. structures of the form (G,τ\mathcal{G},\tau) where G\mathcal{G} is the set of all (isomorphism types of) finite undirected graphs and τ\tau some vocabulary. We define the notion of a recursive predicate over graphs using Turing Machine recognizable string encodings of graphs. We also define the notion of an arithmetical relation over graphs using a total order ≤t\leq_t on the set G\mathcal{G} such that (G,≤t\mathcal{G},\leq_t) is isomorphic to (N,≤\mathbb{N},\leq). We introduce the notion of a \textit{capable} structure over graphs, which is one satisfying the conditions : (1) definability of arithmetic, (2) definability of cardinality of a graph, and (3) definability of two particular graph predicates related to vertex labellings of graphs. We then show any capable structure can define every arithmetical predicate over graphs. As a corollary, any capable structure also defines every recursive graph relation. We identify capable structures which are expansions of graph orders, which are structures of the form (G,≤\mathcal{G},\leq) where ≤\leq is a partial order. We show that the subgraph order i.e. (G,≤s\mathcal{G},\leq_s), induced subgraph order with one constant P3P_3 i.e. (G,≤i,P3\mathcal{G},\leq_i,P_3) and an expansion of the minor order for counting edges i.e. (G,≤m,sameSize(x,y)\mathcal{G},\leq_m,sameSize(x,y)) are capable structures. In the course of the proof, we show the definability of several natural graph theoretic predicates in the subgraph order which may be of independent interest. We discuss the implications of our results and connections to Descriptive Complexity
    • …
    corecore