1,530 research outputs found

    Parametric Constructive Kripke-Semantics for Standard Multi-Agent Belief and Knowledge (Knowledge As Unbiased Belief)

    Full text link
    We propose parametric constructive Kripke-semantics for multi-agent KD45-belief and S5-knowledge in terms of elementary set-theoretic constructions of two basic functional building blocks, namely bias (or viewpoint) and visibility, functioning also as the parameters of the doxastic and epistemic accessibility relation. The doxastic accessibility relates two possible worlds whenever the application of the composition of bias with visibility to the first world is equal to the application of visibility to the second world. The epistemic accessibility is the transitive closure of the union of our doxastic accessibility and its converse. Therefrom, accessibility relations for common and distributed belief and knowledge can be constructed in a standard way. As a result, we obtain a general definition of knowledge in terms of belief that enables us to view S5-knowledge as accurate (unbiased and thus true) KD45-belief, negation-complete belief and knowledge as exact KD45-belief and S5-knowledge, respectively, and perfect S5-knowledge as precise (exact and accurate) KD45-belief, and all this generically for arbitrary functions of bias and visibility. Our results can be seen as a semantic complement to previous foundational results by Halpern et al. about the (un)definability and (non-)reducibility of knowledge in terms of and to belief, respectively

    Vienna Circle and Logical Analysis of Relativity Theory

    Full text link
    In this paper we present some of our school's results in the area of building up relativity theory (RT) as a hierarchy of theories in the sense of logic. We use plain first-order logic (FOL) as in the foundation of mathematics (FOM) and we build on experience gained in FOM. The main aims of our school are the following: We want to base the theory on simple, unambiguous axioms with clear meanings. It should be absolutely understandable for any reader what the axioms say and the reader can decide about each axiom whether he likes it. The theory should be built up from these axioms in a straightforward, logical manner. We want to provide an analysis of the logical structure of the theory. We investigate which axioms are needed for which predictions of RT. We want to make RT more transparent logically, easier to understand, easier to change, modular, and easier to teach. We want to obtain deeper understanding of RT. Our work can be considered as a case-study showing that the Vienna Circle's (VC) approach to doing science is workable and fruitful when performed with using the insights and tools of mathematical logic acquired since its formation years at the very time of the VC activity. We think that logical positivism was based on the insight and anticipation of what mathematical logic is capable when elaborated to some depth. Logical positivism, in great part represented by VC, influenced and took part in the birth of modern mathematical logic. The members of VC were brave forerunners and pioneers.Comment: 25 pages, 1 firgure

    The prospects for mathematical logic in the twenty-first century

    Get PDF
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.Comment: Association for Symbolic Logi

    Finiteness conditions for graph algebras over tropical semirings

    Full text link
    Connection matrices for graph parameters with values in a field have been introduced by M. Freedman, L. Lov{\'a}sz and A. Schrijver (2007). Graph parameters with connection matrices of finite rank can be computed in polynomial time on graph classes of bounded tree-width. We introduce join matrices, a generalization of connection matrices, and allow graph parameters to take values in the tropical rings (max-plus algebras) over the real numbers. We show that rank-finiteness of join matrices implies that these graph parameters can be computed in polynomial time on graph classes of bounded clique-width. In the case of graph parameters with values in arbitrary commutative semirings, this remains true for graph classes of bounded linear clique-width. B. Godlin, T. Kotek and J.A. Makowsky (2008) showed that definability of a graph parameter in Monadic Second Order Logic implies rank finiteness. We also show that there are uncountably many integer valued graph parameters with connection matrices or join matrices of fixed finite rank. This shows that rank finiteness is a much weaker assumption than any definability assumption.Comment: 12 pages, accepted for presentation at FPSAC 2014 (Chicago, June 29 -July 3, 2014), to appear in Discrete Mathematics and Theoretical Computer Scienc

    Comparing theories: the dynamics of changing vocabulary. A case-study in relativity theory

    Full text link
    There are several first-order logic (FOL) axiomatizations of special relativity theory in the literature, all looking essentially different but claiming to axiomatize the same physical theory. In this paper, we elaborate a comparison, in the framework of mathematical logic, between these FOL theories for special relativity. For this comparison, we use a version of mathematical definability theory in which new entities can also be defined besides new relations over already available entities. In particular, we build an interpretation of the reference-frame oriented theory SpecRel into the observationally oriented Signalling theory of James Ax. This interpretation provides SpecRel with an operational/experimental semantics. Then we make precise, "quantitative" comparisons between these two theories via using the notion of definitional equivalence. This is an application of logic to the philosophy of science and physics in the spirit of Johan van Benthem's work.Comment: 27 pages, 8 figures. To appear in Springer Book series Trends in Logi

    Fixed-parameter tractability, definability, and model checking

    Full text link
    In this article, we study parameterized complexity theory from the perspective of logic, or more specifically, descriptive complexity theory. We propose to consider parameterized model-checking problems for various fragments of first-order logic as generic parameterized problems and show how this approach can be useful in studying both fixed-parameter tractability and intractability. For example, we establish the equivalence between the model-checking for existential first-order logic, the homomorphism problem for relational structures, and the substructure isomorphism problem. Our main tractability result shows that model-checking for first-order formulas is fixed-parameter tractable when restricted to a class of input structures with an excluded minor. On the intractability side, for every t >= 0 we prove an equivalence between model-checking for first-order formulas with t quantifier alternations and the parameterized halting problem for alternating Turing machines with t alternations. We discuss the close connection between this alternation hierarchy and Downey and Fellows' W-hierarchy. On a more abstract level, we consider two forms of definability, called Fagin definability and slicewise definability, that are appropriate for describing parameterized problems. We give a characterization of the class FPT of all fixed-parameter tractable problems in terms of slicewise definability in finite variable least fixed-point logic, which is reminiscent of the Immerman-Vardi Theorem characterizing the class PTIME in terms of definability in least fixed-point logic.Comment: To appear in SIAM Journal on Computin
    • …
    corecore