37 research outputs found

    Definability, Canonical Models, and Compactness for Finitary Coalgebraic Modal Logic

    Get PDF
    This paper studies coalgebras from the perspective of the finitary observations that can be made of their behaviours. Based on the terminal sequence, notions of finitary behaviours and finitary predicates are introduced. A category Behω(T) of coalgebras with morphisms preserving finitary behaviours is defined. We then investigate definability and compactness for finitary coalgebraic modal logic, show that the final object in Behω(T) generalises the notion of a canonical model in modal logic, and study the topology induced on a coalgebra by the finitary part of the terminal sequence

    Forward and Backward Steps in a Fibration

    Get PDF
    Distributive laws of various kinds occur widely in the theory of coalgebra, for instance to model automata constructions and trace semantics, and to interpret coalgebraic modal logic. We study steps, which are a general type of distributive law, that allow one to map coalgebras along an adjunction. In this paper, we address the question of what such mappings do to well known notions of equivalence, e.g., bisimilarity, behavioural equivalence, and logical equivalence. We do this using the characterisation of such notions of equivalence as (co)inductive predicates in a fibration. Our main contribution is the identification of conditions on the interaction between the steps and liftings, which guarantees preservation of fixed points by the mapping of coalgebras along the adjunction. We apply these conditions in the context of lax liftings proposed by Bonchi, Silva, Sokolova (2021), and generalise their result on preservation of bisimilarity in the construction of a belief state transformer. Further, we relate our results to properties of coalgebraic modal logics including expressivity and completeness

    Probability Logic for Harsanyi Type Spaces

    Full text link
    Probability logic has contributed to significant developments in belief types for game-theoretical economics. We present a new probability logic for Harsanyi Type spaces, show its completeness, and prove both a de-nesting property and a unique extension theorem. We then prove that multi-agent interactive epistemology has greater complexity than its single-agent counterpart by showing that if the probability indices of the belief language are restricted to a finite set of rationals and there are finitely many propositional letters, then the canonical space for probabilistic beliefs with one agent is finite while the canonical one with at least two agents has the cardinality of the continuum. Finally, we generalize the three notions of definability in multimodal logics to logics of probabilistic belief and knowledge, namely implicit definability, reducibility, and explicit definability. We find that S5-knowledge can be implicitly defined by probabilistic belief but not reduced to it and hence is not explicitly definable by probabilistic belief

    Dualities in modal logic

    Get PDF
    Categorical dualities are an important tool in the study of (modal) logics. They offer conceptual understanding and enable the transfer of results between the different semantics of a logic. As such, they play a central role in the proofs of completeness theorems, Sahlqvist theorems and Goldblatt-Thomason theorems. A common way to obtain dualities is by extending existing ones. For example, Jonsson-Tarski duality is an extension of Stone duality. A convenient formalism to carry out such extensions is given by the dual categorical notions of algebras and coalgebras. Intuitively, these allow one to isolate the new part of a duality from the existing part. In this thesis we will derive both existing and new dualities via this route, and we show how to use the dualities to investigate logics. However, not all (modal logical) paradigms fit the (co)algebraic perspective. In particular, modal intuitionistic logics do not enjoy a coalgebraic treatment, and there is a general lack of duality results for them. To remedy this, we use a generalisation of both algebras and coalgebras called dialgebras. Guided by the research field of coalgebraic logic, we introduce the framework of dialgebraic logic. We show how a large class of modal intuitionistic logics can be modelled as dialgebraic logics and we prove dualities for them. We use the dialgebraic framework to prove general completeness, Hennessy-Milner, representation and Goldblatt-Thomason theorems, and instantiate this to a wide variety of modal intuitionistic logics. Additionally, we use the dialgebraic perspective to investigate modal extensions of the meet-implication fragment of intuitionistic logic. We instantiate general dialgebraic results, and describe how modal meet-implication logics relate to modal intuitionistic logics

    Probability Logic for Harsanyi Type Spaces

    Full text link

    Complete Additivity and Modal Incompleteness

    Get PDF
    In this paper, we tell a story about incompleteness in modal logic. The story weaves together a paper of van Benthem, `Syntactic aspects of modal incompleteness theorems,' and a longstanding open question: whether every normal modal logic can be characterized by a class of completely additive modal algebras, or as we call them, V-BAOs. Using a first-order reformulation of the property of complete additivity, we prove that the modal logic that starred in van Benthem's paper resolves the open question in the negative. In addition, for the case of bimodal logic, we show that there is a naturally occurring logic that is incomplete with respect to V-BAOs, namely the provability logic GLB. We also show that even logics that are unsound with respect to such algebras do not have to be more complex than the classical propositional calculus. On the other hand, we observe that it is undecidable whether a syntactically defined logic is V-complete. After these results, we generalize the Blok Dichotomy to degrees of V-incompleteness. In the end, we return to van Benthem's theme of syntactic aspects of modal incompleteness

    Coalgebras on Measurable Spaces

    Get PDF
    Thesis (PhD) - Indiana University, Mathematics, 2005Given an endofunctor T in a category C, a coalgebra is a pair (X,c) consisting of an object X and a morphism c:X ->T(X). X is called the carrier and the morphism c is called the structure map of the T-coalgebra. The theory of coalgebras has been found to abstract common features of different areas like computer program semantics, modal logic, automata, non-well-founded sets, etc. Most of the work on concrete examples, however, has been limited to the category Set. The work developed in this dissertation is concerned with the category Meas of measurable spaces and measurable functions. Coalgebras of measurable spaces are of interest as a formalization of Markov Chains and can also be used to model probabilistic reasoning. We discuss some general facts related to the most interesting functor in Meas, Delta, that assigns to each measurable space, the space of all probability measures on it. We show that this functor does not preserve weak pullbacks or omega op-limits, conditions assumed in many theorems about coalgebras. The main result will be two constructions of final coalgebras for many interesting functors in Meas. The first construction (joint work with L. Moss), is based on a modal language that lets us build formulas that describe the elements of the final coalgebra. The second method makes use of a subset of the projective limit of the final sequence for the functor in question. That is, the sequence 1 <- T1 <- T 2 1 <-... obtained by iteratively applying the functor to the terminal element 1 of the category. Since these methods seem to be new, we also show how to use them in the category Set, where they provide some insight on how the structure map of the final coalgebra works. We show as an application how to construct universal Type Spaces, an object of interest in Game Theory and Economics. We also compare our method with previously existing constructions
    corecore