1,105 research outputs found

    Performance modelling and enhancement of wireless communication protocols

    Get PDF
    In recent years, Wireless Local Area Networks(WLANs) play a key role in the data communications and networking areas, having witnessed significant research and development. WLANs are extremely popular being almost everywhere including business,office and home deployments.In order to deal with the modem Wireless connectivity needs,the Institute of Electrical and Electronics Engineers(IEEE) has developed the 802.11 standard family utilizing mainly radio transmission techniques, whereas the Infrared Data Association (IrDA) addressed the requirement for multipoint connectivity with the development of the Advanced Infrared(Alr) protocol stack. This work studies the collision avoidance procedures of the IEEE 802.11 Distributed Coordination Function (DCF) protocol and suggests certain protocol enhancements aiming at maximising performance. A new, elegant and accurate analysis based on Markov chain modelling is developed for the idealistic assumption of unlimited packet retransmissions as well as for the case of finite packet retry limits. Simple equations are derived for the through put efficiency, the average packet delay, the probability of a packet being discarded when it reaches the maximum retransmission limit, the average time to drop such a packet and the packet inter-arrival time for both basic access and RTS/CTS medium access schemes.The accuracy of the mathematical model is validated by comparing analytical with OPNET simulation results. An extensive and detailed study is carried out on the influence of performance of physical layer, data rate, packet payload size and several backoff parameters for both medium access mechanisms. The previous mathematical model is extended to take into account transmission errors that can occur either independently with fixed Bit Error Rate(BER) or in bursts. The dependency of the protocol performance on BER and other factors related to independent and burst transmission errors is explored. Furthermore, a simple-implement appropriate tuning of the back off algorithm for maximizing IEEE 802-11 protocol performance is proposed depending on the specific communication requirements. The effectiveness of the RTS/CTS scheme in reducing collision duration at high data rates is studied and an all-purpose expression for the optimal use of the RTS/CTS reservation scheme is derived. Moreover, an easy-to-implement backoff algorithm that significantly enhances performance is introduced and an alternative derivation is developed based on elementary conditional probability arguments rather than bi-dimensional Markov chains. Finally, an additional performance improvement scheme is proposed by employing packet bursting in order to reduce overhead costs such as contention time and RTS/CTSex changes. Fairness is explored in short-time and long-time scales for both the legacy DCF and packet bursting cases. AIr protocol employs the RTS/CTS medium reservation scheme to cope with hidden stations and CSMA/CA techniques with linear contention window (CW) adjustment for medium access. A 1-dimensional Markov chain model is constructed instead of the bi-dimensional model in order to obtain simple mathematical equations of the average packet delay.This new approach greatly simplifies previous analyses and can be applied to any CSMA/CA protocol.The derived mathematical model is validated by comparing analytical with simulation results and an extensive Alr packet delay evaluation is carried out by taking into account all the factors and parameters that affect protocol performance. Finally, suitable values for both backoff and protocol parameters are proposed that reduce average packet delay and, thus, maximize performance

    Performance modelling and enhancement of wireless communication protocols

    Get PDF
    In recent years, Wireless Local Area Networks(WLANs) play a key role in the data communications and networking areas, having witnessed significant research and development. WLANs are extremely popular being almost everywhere including business,office and home deployments.In order to deal with the modem Wireless connectivity needs,the Institute of Electrical and Electronics Engineers(IEEE) has developed the 802.11 standard family utilizing mainly radio transmission techniques, whereas the Infrared Data Association (IrDA) addressed the requirement for multipoint connectivity with the development of the Advanced Infrared(Alr) protocol stack. This work studies the collision avoidance procedures of the IEEE 802.11 Distributed Coordination Function (DCF) protocol and suggests certain protocol enhancements aiming at maximising performance. A new, elegant and accurate analysis based on Markov chain modelling is developed for the idealistic assumption of unlimited packet retransmissions as well as for the case of finite packet retry limits. Simple equations are derived for the through put efficiency, the average packet delay, the probability of a packet being discarded when it reaches the maximum retransmission limit, the average time to drop such a packet and the packet inter-arrival time for both basic access and RTS/CTS medium access schemes.The accuracy of the mathematical model is validated by comparing analytical with OPNET simulation results. An extensive and detailed study is carried out on the influence of performance of physical layer, data rate, packet payload size and several backoff parameters for both medium access mechanisms. The previous mathematical model is extended to take into account transmission errors that can occur either independently with fixed Bit Error Rate(BER) or in bursts. The dependency of the protocol performance on BER and other factors related to independent and burst transmission errors is explored. Furthermore, a simple-implement appropriate tuning of the back off algorithm for maximizing IEEE 802-11 protocol performance is proposed depending on the specific communication requirements. The effectiveness of the RTS/CTS scheme in reducing collision duration at high data rates is studied and an all-purpose expression for the optimal use of the RTS/CTS reservation scheme is derived. Moreover, an easy-to-implement backoff algorithm that significantly enhances performance is introduced and an alternative derivation is developed based on elementary conditional probability arguments rather than bi-dimensional Markov chains. Finally, an additional performance improvement scheme is proposed by employing packet bursting in order to reduce overhead costs such as contention time and RTS/CTSex changes. Fairness is explored in short-time and long-time scales for both the legacy DCF and packet bursting cases. AIr protocol employs the RTS/CTS medium reservation scheme to cope with hidden stations and CSMA/CA techniques with linear contention window (CW) adjustment for medium access. A 1-dimensional Markov chain model is constructed instead of the bi-dimensional model in order to obtain simple mathematical equations of the average packet delay.This new approach greatly simplifies previous analyses and can be applied to any CSMA/CA protocol.The derived mathematical model is validated by comparing analytical with simulation results and an extensive Alr packet delay evaluation is carried out by taking into account all the factors and parameters that affect protocol performance. Finally, suitable values for both backoff and protocol parameters are proposed that reduce average packet delay and, thus, maximize performance.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Intelligent packet discarding policies for real-time traffic over wireless networks.

    Get PDF
    Yuen Ching Wan.Thesis (M.Phil.)--Chinese University of Hong Kong, 2006.Includes bibliographical references (leaves 77-83).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.iiiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Nature of Real-Time Traffic --- p.1Chapter 1.2 --- Delay Variability in Wireless Networks --- p.2Chapter 1.2.1 --- Propagation Medium --- p.3Chapter 1.2.2 --- Impacts of Network Designs --- p.5Chapter 1.3 --- The Keys - Packet Lifetime & Channel State --- p.8Chapter 1.4 --- Contributions of the Thesis --- p.8Chapter 1.5 --- Organization of the Thesis --- p.9Chapter 2 --- Background Study --- p.11Chapter 2.1 --- Packet Scheduling --- p.12Chapter 2.2 --- Call Admission Control (CAC) --- p.12Chapter 2.3 --- Active Queue Management (AQM) --- p.13Chapter 2.3.1 --- AQM for Wired Network --- p.14Chapter 2.3.2 --- AQM for Wireless Network --- p.17Chapter 3 --- Intelligent Packet Discarding Policies --- p.21Chapter 3.1 --- Random Packet Discard --- p.22Chapter 3.1.1 --- Variable Buffer Limit (VABL) --- p.22Chapter 3.2 --- Packet Discard on Expiration Likelihood (PEL) --- p.23Chapter 3.2.1 --- Working Principle --- p.24Chapter 3.2.2 --- Channel State Aware Packet Discard on Expiration Likelihood (CAPEL) --- p.26Chapter 3.3 --- System Modeling --- p.29Chapter 3.3.1 --- Wireless Channel as an Markov-Modulated Poisson Process (MMPP) --- p.30Chapter 3.3.2 --- System Analysis --- p.30Chapter 3.3.3 --- System Time Distribution --- p.33Chapter 3.3.4 --- Approximation of System Time Distribution by Gamma Distribution --- p.36Chapter 3.4 --- Goodput Analysis of Intelligent Packet Discarding Policies --- p.38Chapter 3.4.1 --- Variable Buffer Limit (VABL) --- p.38Chapter 3.4.2 --- CAPEL at the End-of-Line --- p.39Chapter 3.4.3 --- CAPEL at the Head-of-Line --- p.43Chapter 4 --- Performance Evaluation --- p.44Chapter 4.1 --- Simulation --- p.44Chapter 4.1.1 --- General Settings --- p.45Chapter 4.1.2 --- Choices of Parameters --- p.46Chapter 4.1.3 --- Variable Buffer Limit (VABL) --- p.49Chapter 4.1.4 --- CAPEL at the End-of-Line --- p.53Chapter 4.1.5 --- CAPEL at the Head-of-Line --- p.60Chapter 4.2 --- General Discussion --- p.64Chapter 4.2.1 --- CAPEL vs RED --- p.64Chapter 4.2.2 --- Gamma Approximation for System Time Distribution . --- p.69Chapter 5 --- Conclusion --- p.70Chapter A --- Equation Derivation --- p.73Chapter A.l --- Steady State Probabilities --- p.73Bibliography --- p.7

    Channel-predictive link layer ARQ protocols in wireless networks

    Get PDF
    Communication performance over a wireless channel should be considered according to two main parameters: energy and throughput. The reliable data transfer is a key to these goals. The reliable node-to-node data transfer is performed by link layer protocols. One prominent approach is Automatic Repeat Request (ARQ) protocol. The traditional ARQ protocols attempt to recover the erroneously transmitted frames by retransmitting those frames, regardless of the channel state. Since this channel state unaware behaviour may cause unnecessary retransmissions, traditional ARQ protocols are expected to be energy inefficient. Some ideas have been proposed such as stochastic learning automaton based ARQ, and channel probing based ARQ. However, these algorithms do not attempt to estimate the channel\u27s existing condition. Instead, the retransmission decision is made according to a simple feedback, on whether the previous frame was successful. This thesis presents four proposed algorithms, which incorporates the channel state estimate in the feedback process to judiciously select a frame (re)transmission timing instant. Algorithms have been applied on Stop-and-Wait (S-W) ARQ, and the performance have been compared with respect to simple S-W ARQ, and probing based S-W ARQ. In probing based ARQ, when the channel deteriorates, transmitter starts probing channel periodically, but the periodicity is chosen arbitrarily, regardless of the fading state. In contrast, the proposed algorithms estimate the channel\u27s existing condition by using feedbacks, and the probing interval is chosen according to the Average Fading Duration (AFD) of received signal. Simulations are performed with Rayleigh Fading Channel. The performance results show that at the cost of some additional delay, significiant gain on energy saving and throughput performance can be achieved when AFD based intelligent probing is done

    Physiological and Behavioral Evidence of Auditory Processing Deficit in Children Suspected of Auditory Processing Disorder

    Get PDF
    A series of studies were carried out to examine the neural and behavioral processing of acoustic stimuli in children with suspected auditory processing disorder (sAPD). The click-evoked auditory brainstem responses recorded from children with sAPD and adults were analyzed using traditional clinical measures and detailed analysis seeking to explore the separate contributions of axonal conduction and synaptic transmission. Clinical measures revealed significant prolongation of absolute latencies and interwave intervals in children with sAPD compared to adults. Examination of responses delineating axonal vs. synaptic transmission showed frequent delays in synaptic factors and fewer instances of delays related to axonal conduction in children with sAPD compared to adults. Inefficient neural transmission in the auditory brainstem may lead to difficulty in coding of dynamic acoustic cues (envelope, fine structure or spectral shape) that are necessary for recognizing speech in quiet and in noise. The ability to use envelope and fine structure cues to recognize speech in noise was therefore examined in children with sAPD, typically developing children and adults. Typically developing children showed developmental trend in use of envelope cues. Whereas children with sAPD were less efficient in using envelope and fine structure cues to recognize speech in noise compared to age-matched children and adults. Perception of speech based on fine structure alone was difficult for both TD children and children with sAPD compared to adults. This could be due to developmental difficulty in integrating frequency information from different bands. Difficulty in integrating auditory filter outputs may lead to the inadequate representation of spectral shape, which is necessary for recognizing speech sounds. Spectral shape perception was assessed using a spectral ripple discrimination task in typically developing children, children with sAPD, and adults. Young children could resolve fewer of ripples per octave when compared older children and adults. The performance of children with sAPD was poor compared to age-matched controls and young adults. Spectral-ripple discrimination showed a strong trend for improvement in thresholds as a function of age in both typically developing children and children with sAPD. This suggests that spectral shape is a learned cue and may take a longer time to mature

    Cross-layer latency-aware and -predictable data communication

    Get PDF
    Cyber-physical systems are making their way into more aspects of everyday life. These systems are increasingly distributed and hence require networked communication to coordinatively fulfil control tasks. Providing this in a robust and resilient manner demands for latency-awareness and -predictability at all layers of the communication and computation stack. This thesis addresses how these two latency-related properties can be implemented at the transport layer to serve control applications in ways that traditional approaches such as TCP or RTP cannot. Thereto, the Predictably Reliable Real-time Transport (PRRT) protocol is presented, including its unique features (e.g. partially reliable, ordered, in-time delivery, and latency-avoiding congestion control) and unconventional APIs. This protocol has been intensively evaluated using the X-Lap toolkit that has been specifically developed to support protocol designers in improving latency, timing, and energy characteristics of protocols in a cross-layer, intra-host fashion. PRRT effectively circumvents latency-inducing bufferbloat using X-Pace, an implementation of the cross-layer pacing approach presented in this thesis. This is shown using experimental evaluations on real Internet paths. Apart from PRRT, this thesis presents means to make TCP-based transport aware of individual link latencies and increases the predictability of the end-to-end delays using Transparent Transmission Segmentation.Cyber-physikalische Systeme werden immer relevanter für viele Aspekte des Alltages. Sie sind zunehmend verteilt und benötigen daher Netzwerktechnik zur koordinierten Erfüllung von Regelungsaufgaben. Um dies auf eine robuste und zuverlässige Art zu tun, ist Latenz-Bewusstsein und -Prädizierbarkeit auf allen Ebenen der Informations- und Kommunikationstechnik nötig. Diese Dissertation beschäftigt sich mit der Implementierung dieser zwei Latenz-Eigenschaften auf der Transport-Schicht, sodass Regelungsanwendungen deutlich besser unterstützt werden als es traditionelle Ansätze, wie TCP oder RTP, können. Hierzu wird das PRRT-Protokoll vorgestellt, inklusive seiner besonderen Eigenschaften (z.B. partiell zuverlässige, geordnete, rechtzeitige Auslieferung sowie Latenz-vermeidende Staukontrolle) und unkonventioneller API. Das Protokoll wird mit Hilfe von X-Lap evaluiert, welches speziell dafür entwickelt wurde Protokoll-Designer dabei zu unterstützen die Latenz-, Timing- und Energie-Eigenschaften von Protokollen zu verbessern. PRRT vermeidet Latenz-verursachenden Bufferbloat mit Hilfe von X-Pace, einer Cross-Layer Pacing Implementierung, die in dieser Arbeit präsentiert und mit Experimenten auf realen Internet-Pfaden evaluiert wird. Neben PRRT behandelt diese Arbeit transparente Übertragungssegmentierung, welche dazu dient dem TCP-basierten Transport individuelle Link-Latenzen bewusst zu machen und so die Vorhersagbarkeit der Ende-zu-Ende Latenz zu erhöhen

    The effects of methotrexate on human bone cell responses to mechanical stimulation

    Get PDF

    Faculty Publications & Presentations, 2001-2002

    Get PDF
    • …
    corecore