5,877 research outputs found

    Defensive alliances in graphs: a survey

    Full text link
    A set SS of vertices of a graph GG is a defensive kk-alliance in GG if every vertex of SS has at least kk more neighbors inside of SS than outside. This is primarily an expository article surveying the principal known results on defensive alliances in graph. Its seven sections are: Introduction, Computational complexity and realizability, Defensive kk-alliance number, Boundary defensive kk-alliances, Defensive alliances in Cartesian product graphs, Partitioning a graph into defensive kk-alliances, and Defensive kk-alliance free sets.Comment: 25 page

    Global defensive k-alliances in graphs

    Get PDF
    Let Γ=(V,E)\Gamma=(V,E) be a simple graph. For a nonempty set X⊆VX\subseteq V, and a vertex v∈Vv\in V, δX(v)\delta_{X}(v) denotes the number of neighbors vv has in XX. A nonempty set S⊆VS\subseteq V is a \emph{defensive kk-alliance} in Γ=(V,E)\Gamma=(V,E) if δS(v)≥δSˉ(v)+k,\delta_S(v)\ge \delta_{\bar{S}}(v)+k, ∀v∈S.\forall v\in S. A defensive kk-alliance SS is called \emph{global} if it forms a dominating set. The \emph{global defensive kk-alliance number} of Γ\Gamma, denoted by γka(Γ)\gamma_{k}^{a}(\Gamma), is the minimum cardinality of a defensive kk-alliance in Γ\Gamma. We study the mathematical properties of γka(Γ)\gamma_{k}^{a}(\Gamma)

    Quorum Colorings of Graphs

    Get PDF
    Let G=(V,E)G = (V,E) be a graph. A partition π={V1,V2,…,Vk}\pi = \{V_1, V_2, \ldots, V_k \} of the vertices VV of GG into kk {\it color classes} ViV_i, with 1≤i≤k1 \leq i \leq k, is called a {\it quorum coloring} if for every vertex v∈Vv \in V, at least half of the vertices in the closed neighborhood N[v]N[v] of vv have the same color as vv. In this paper we introduce the study of quorum colorings of graphs and show that they are closely related to the concept of defensive alliances in graphs. Moreover, we determine the maximum quorum coloring of a hypercube

    Global defensive k-alliances in directed graphs: combinatorial and computational issues

    Get PDF
    In this paper we define the global defensive k-alliance (number) in a digraph D, and give several bounds on this parameter with characterizations of all digraphs attaining the bounds. In particular, for the case k = -1, we give a lower (an upper) bound on this parameter for directed trees (rooted trees). Moreover, the characterization of all directed trees (rooted trees) for which the equality holds is given. Finally, we show that the problem of finding the global defensive k-alliance number of a digraph is NP-hard for any suitable non-negative value of k, and in contrast with it, we also show that finding a minimum global defensive (-1)-alliance for any rooted tree is polynomial-time solvable

    Offensive alliances in cubic graphs

    Full text link
    An offensive alliance in a graph Γ=(V,E)\Gamma=(V,E) is a set of vertices S⊂VS\subset V where for every vertex vv in its boundary it holds that the majority of vertices in vv's closed neighborhood are in SS. In the case of strong offensive alliance, strict majority is required. An alliance SS is called global if it affects every vertex in V\SV\backslash S, that is, SS is a dominating set of Γ\Gamma. The global offensive alliance number γo(Γ)\gamma_o(\Gamma) (respectively, global strong offensive alliance number γo^(Γ)\gamma_{\hat{o}}(\Gamma)) is the minimum cardinality of a global offensive (respectively, global strong offensive) alliance in Γ\Gamma. If Γ\Gamma has global independent offensive alliances, then the \emph{global independent offensive alliance number} γi(Γ)\gamma_i(\Gamma) is the minimum cardinality among all independent global offensive alliances of Γ\Gamma. In this paper we study mathematical properties of the global (strong) alliance number of cubic graphs. For instance, we show that for all connected cubic graph of order nn, 2n5≤γi(Γ)≤n2≤γo^(Γ)≤3n4≤γo^(L(Γ))=γo(L(Γ))≤n,\frac{2n}{5}\le \gamma_i(\Gamma)\le \frac{n}{2}\le \gamma_{\hat{o}}(\Gamma)\le \frac{3n}{4} \le \gamma_{\hat{o}}({\cal L}(\Gamma))=\gamma_{o}({\cal L}(\Gamma))\le n, where L(Γ){\cal L}(\Gamma) denotes the line graph of Γ\Gamma. All the above bounds are tight
    • …
    corecore