2,916 research outputs found

    Defensive alliances in graphs: a survey

    Full text link
    A set SS of vertices of a graph GG is a defensive kk-alliance in GG if every vertex of SS has at least kk more neighbors inside of SS than outside. This is primarily an expository article surveying the principal known results on defensive alliances in graph. Its seven sections are: Introduction, Computational complexity and realizability, Defensive kk-alliance number, Boundary defensive kk-alliances, Defensive alliances in Cartesian product graphs, Partitioning a graph into defensive kk-alliances, and Defensive kk-alliance free sets.Comment: 25 page

    On defensive alliances and line graphs

    Get PDF
    Let Γ\Gamma be a simple graph of size mm and degree sequence δ1≥δ2≥...≥δn\delta_1\ge \delta_2\ge ... \ge \delta_n. Let L(Γ){\cal L}(\Gamma) denotes the line graph of Γ\Gamma. The aim of this paper is to study mathematical properties of the alliance number, a(L(Γ){a}({\cal L}(\Gamma), and the global alliance number, γa(L(Γ))\gamma_{a}({\cal L}(\Gamma)), of the line graph of a simple graph. We show that ⌈δn+δn−1−12⌉≤a(L(Γ))≤δ1.\lceil\frac{\delta_{n}+\delta_{n-1}-1}{2}\rceil \le {a}({\cal L}(\Gamma))\le \delta_1. In particular, if Γ\Gamma is a δ\delta-regular graph (δ>0\delta>0), then a(L(Γ))=δa({\cal L}(\Gamma))=\delta, and if Γ\Gamma is a (δ1,δ2)(\delta_1,\delta_2)-semiregular bipartite graph, then a(L(Γ))=⌈δ1+δ2−12⌉a({\cal L}(\Gamma))=\lceil \frac{\delta_1+\delta_2-1}{2} \rceil. As a consequence of the study we compare a(L(Γ))a({\cal L}(\Gamma)) and a(Γ){a}(\Gamma), and we characterize the graphs having a(L(Γ))<4a({\cal L}(\Gamma))<4. Moreover, we show that the global-connected alliance number of L(Γ){\cal L}(\Gamma) is bounded by γca(L(Γ))≥⌈D(Γ)+m−1−1⌉,\gamma_{ca}({\cal L}(\Gamma)) \ge \lceil\sqrt{D(\Gamma)+m-1}-1\rceil, where D(Γ)D(\Gamma) denotes the diameter of Γ\Gamma, and we show that the global alliance number of L(Γ){\cal L}(\Gamma) is bounded by γa(L(Γ))≥⌈2mδ1+δ2+1⌉\gamma_{a}({\cal L}(\Gamma))\geq \lceil\frac{2m}{\delta_{1}+\delta_{2}+1}\rceil. The case of strong alliances is studied by analogy

    Partitioning A Graph In Alliances And Its Application To Data Clustering

    Get PDF
    Any reasonably large group of individuals, families, states, and parties exhibits the phenomenon of subgroup formations within the group such that the members of each group have a strong connection or bonding between each other. The reasons of the formation of these subgroups that we call alliances differ in different situations, such as, kinship and friendship (in the case of individuals), common economic interests (for both individuals and states), common political interests, and geographical proximity. This structure of alliances is not only prevalent in social networks, but it is also an important characteristic of similarity networks of natural and unnatural objects. (A similarity network defines the links between two objects based on their similarities). Discovery of such structure in a data set is called clustering or unsupervised learning and the ability to do it automatically is desirable for many applications in the areas of pattern recognition, computer vision, artificial intelligence, behavioral and social sciences, life sciences, earth sciences, medicine, and information theory. In this dissertation, we study a graph theoretical model of alliances where an alliance of the vertices of a graph is a set of vertices in the graph, such that every vertex in the set is adjacent to equal or more vertices inside the set than the vertices outside it. We study the problem of partitioning a graph into alliances and identify classes of graphs that have such a partition. We present results on the relationship between the existence of such a partition and other well known graph parameters, such as connectivity, subgraph structure, and degrees of vertices. We also present results on the computational complexity of finding such a partition. An alliance cover set is a set of vertices in a graph that contains at least one vertex from every alliance of the graph. The complement of an alliance cover set is an alliance free set, that is, a set that does not contain any alliance as a subset. We study the properties of these sets and present tight bounds on their cardinalities. In addition, we also characterize the graphs that can be partitioned into alliance free and alliance cover sets. Finally, we present an approximate algorithm to discover alliances in a given graph. At each step, the algorithm finds a partition of the vertices into two alliances such that the alliances are strongest among all such partitions. The strength of an alliance is defined as a real number p, such that every vertex in the alliance has at least p times more neighbors in the set than its total number of neighbors in the graph). We evaluate the performance of the proposed algorithm on standard data sets

    Defensive alliance polynomial

    Get PDF
    We introduce a new bivariate polynomial which we call the defensive alliance polynomial and denote it by da(G; x, y). It is a generalization of the alliance polynomial [Carballosa et al., 2014] and the strong alliance polynomial [Carballosa et al., 2016]. We show the relation between da(G; x, y) and the alliance, the strong alliance and the induced connected subgraph [Tittmann et al., 2011] polynomials. Then, we investigate information encoded in da(G; x, y) about G. We discuss the defensive alliance polynomial for the path graphs, the cycle graphs, the star graphs, the double star graphs, the complete graphs, the complete bipartite graphs, the regular graphs, the wheel graphs, the open wheel graphs, the friendship graphs, the triangular book graphs and the quadrilateral book graphs. Also, we prove that the above classes of graphs are characterized by its defensive alliance polynomial. A relation between induced subgraphs with order three and both subgraphs with order three and size three and two respectively, is proved to characterize the complete bipartite graphs. Finally, we present the defensive alliance polynomial of the graph formed by attaching a vertex to a complete graph. We show two pairs of graphs which are not characterized by the alliance polynomial but characterized by the defensive alliance polynomial

    Alliance Partitions in Graphs.

    Get PDF
    For a graph G=(V,E), a nonempty subset S contained in V is called a defensive alliance if for each v in S, there are at least as many vertices from the closed neighborhood of v in S as in V-S. If there are strictly more vertices from the closed neighborhood of v in S as in V-S, then S is a strong defensive alliance. A (strong) defensive alliance is called global if it is also a dominating set of G. The alliance partition number (respectively, strong alliance partition number) is the maximum cardinality of a partition of V into defensive alliances (respectively, strong defensive alliances). The global (strong) alliance partition number is defined similarly. For each parameter we give both general bounds and exact values. Our major results include exact values for the alliance partition number of grid graphs and for the global alliance partition number of caterpillars
    • …
    corecore