2,114 research outputs found

    Defense against Universal Adversarial Perturbations

    Full text link
    Recent advances in Deep Learning show the existence of image-agnostic quasi-imperceptible perturbations that when applied to `any' image can fool a state-of-the-art network classifier to change its prediction about the image label. These `Universal Adversarial Perturbations' pose a serious threat to the success of Deep Learning in practice. We present the first dedicated framework to effectively defend the networks against such perturbations. Our approach learns a Perturbation Rectifying Network (PRN) as `pre-input' layers to a targeted model, such that the targeted model needs no modification. The PRN is learned from real and synthetic image-agnostic perturbations, where an efficient method to compute the latter is also proposed. A perturbation detector is separately trained on the Discrete Cosine Transform of the input-output difference of the PRN. A query image is first passed through the PRN and verified by the detector. If a perturbation is detected, the output of the PRN is used for label prediction instead of the actual image. A rigorous evaluation shows that our framework can defend the network classifiers against unseen adversarial perturbations in the real-world scenarios with up to 97.5% success rate. The PRN also generalizes well in the sense that training for one targeted network defends another network with a comparable success rate.Comment: Accepted in IEEE CVPR 201

    Universal Adversarial Defense in Remote Sensing Based on Pre-trained Denoising Diffusion Models

    Full text link
    Deep neural networks (DNNs) have achieved tremendous success in many remote sensing (RS) applications, in which DNNs are vulnerable to adversarial perturbations. Unfortunately, current adversarial defense approaches in RS studies usually suffer from performance fluctuation and unnecessary re-training costs due to the need for prior knowledge of the adversarial perturbations among RS data. To circumvent these challenges, we propose a universal adversarial defense approach in RS imagery (UAD-RS) using pre-trained diffusion models to defend the common DNNs against multiple unknown adversarial attacks. Specifically, the generative diffusion models are first pre-trained on different RS datasets to learn generalized representations in various data domains. After that, a universal adversarial purification framework is developed using the forward and reverse process of the pre-trained diffusion models to purify the perturbations from adversarial samples. Furthermore, an adaptive noise level selection (ANLS) mechanism is built to capture the optimal noise level of the diffusion model that can achieve the best purification results closest to the clean samples according to their Frechet Inception Distance (FID) in deep feature space. As a result, only a single pre-trained diffusion model is needed for the universal purification of adversarial samples on each dataset, which significantly alleviates the re-training efforts and maintains high performance without prior knowledge of the adversarial perturbations. Experiments on four heterogeneous RS datasets regarding scene classification and semantic segmentation verify that UAD-RS outperforms state-of-the-art adversarial purification approaches with a universal defense against seven commonly existing adversarial perturbations. Codes and the pre-trained models are available online (https://github.com/EricYu97/UAD-RS).Comment: Added the GitHub link to the abstrac

    Efficient Two-Step Adversarial Defense for Deep Neural Networks

    Full text link
    In recent years, deep neural networks have demonstrated outstanding performance in many machine learning tasks. However, researchers have discovered that these state-of-the-art models are vulnerable to adversarial examples: legitimate examples added by small perturbations which are unnoticeable to human eyes. Adversarial training, which augments the training data with adversarial examples during the training process, is a well known defense to improve the robustness of the model against adversarial attacks. However, this robustness is only effective to the same attack method used for adversarial training. Madry et al.(2017) suggest that effectiveness of iterative multi-step adversarial attacks and particularly that projected gradient descent (PGD) may be considered the universal first order adversary and applying the adversarial training with PGD implies resistance against many other first order attacks. However, the computational cost of the adversarial training with PGD and other multi-step adversarial examples is much higher than that of the adversarial training with other simpler attack techniques. In this paper, we show how strong adversarial examples can be generated only at a cost similar to that of two runs of the fast gradient sign method (FGSM), allowing defense against adversarial attacks with a robustness level comparable to that of the adversarial training with multi-step adversarial examples. We empirically demonstrate the effectiveness of the proposed two-step defense approach against different attack methods and its improvements over existing defense strategies.Comment: 12 page

    Regional Homogeneity: Towards Learning Transferable Universal Adversarial Perturbations Against Defenses

    Get PDF
    This paper focuses on learning transferable adversarial examples specifically against defense models (models to defense adversarial attacks). In particular, we show that a simple universal perturbation can fool a series of state-of-the-art defenses. Adversarial examples generated by existing attacks are generally hard to transfer to defense models. We observe the property of regional homogeneity in adversarial perturbations and suggest that the defenses are less robust to regionally homogeneous perturbations. Therefore, we propose an effective transforming paradigm and a customized gradient transformer module to transform existing perturbations into regionally homogeneous ones. Without explicitly forcing the perturbations to be universal, we observe that a well-trained gradient transformer module tends to output input-independent gradients (hence universal) benefiting from the under-fitting phenomenon. Thorough experiments demonstrate that our work significantly outperforms the prior art attacking algorithms (either image-dependent or universal ones) by an average improvement of 14.0% when attacking 9 defenses in the black-box setting. In addition to the cross-model transferability, we also verify that regionally homogeneous perturbations can well transfer across different vision tasks (attacking with the semantic segmentation task and testing on the object detection task).Comment: The code is available here: https://github.com/LiYingwei/Regional-Homogeneit

    Universal adversarial perturbations for multiple classification tasks with quantum classifiers

    Full text link
    Quantum adversarial machine learning is an emerging field that studies the vulnerability of quantum learning systems against adversarial perturbations and develops possible defense strategies. Quantum universal adversarial perturbations are small perturbations, which can make different input samples into adversarial examples that may deceive a given quantum classifier. This is a field that was rarely looked into but worthwhile investigating because universal perturbations might simplify malicious attacks to a large extent, causing unexpected devastation to quantum machine learning models. In this paper, we take a step forward and explore the quantum universal perturbations in the context of heterogeneous classification tasks. In particular, we find that quantum classifiers that achieve almost state-of-the-art accuracy on two different classification tasks can be both conclusively deceived by one carefully-crafted universal perturbation. This result is explicitly demonstrated with well-designed quantum continual learning models with elastic weight consolidation method to avoid catastrophic forgetting, as well as real-life heterogeneous datasets from hand-written digits and medical MRI images. Our results provide a simple and efficient way to generate universal perturbations on heterogeneous classification tasks and thus would provide valuable guidance for future quantum learning technologies

    Generative Adversarial Perturbations

    Full text link
    In this paper, we propose novel generative models for creating adversarial examples, slightly perturbed images resembling natural images but maliciously crafted to fool pre-trained models. We present trainable deep neural networks for transforming images to adversarial perturbations. Our proposed models can produce image-agnostic and image-dependent perturbations for both targeted and non-targeted attacks. We also demonstrate that similar architectures can achieve impressive results in fooling classification and semantic segmentation models, obviating the need for hand-crafting attack methods for each task. Using extensive experiments on challenging high-resolution datasets such as ImageNet and Cityscapes, we show that our perturbations achieve high fooling rates with small perturbation norms. Moreover, our attacks are considerably faster than current iterative methods at inference time.Comment: CVPR 2018, camera-ready versio
    • …
    corecore