704 research outputs found

    Byzantine Attack and Defense in Cognitive Radio Networks: A Survey

    Full text link
    The Byzantine attack in cooperative spectrum sensing (CSS), also known as the spectrum sensing data falsification (SSDF) attack in the literature, is one of the key adversaries to the success of cognitive radio networks (CRNs). In the past couple of years, the research on the Byzantine attack and defense strategies has gained worldwide increasing attention. In this paper, we provide a comprehensive survey and tutorial on the recent advances in the Byzantine attack and defense for CSS in CRNs. Specifically, we first briefly present the preliminaries of CSS for general readers, including signal detection techniques, hypothesis testing, and data fusion. Second, we analyze the spear and shield relation between Byzantine attack and defense from three aspects: the vulnerability of CSS to attack, the obstacles in CSS to defense, and the games between attack and defense. Then, we propose a taxonomy of the existing Byzantine attack behaviors and elaborate on the corresponding attack parameters, which determine where, who, how, and when to launch attacks. Next, from the perspectives of homogeneous or heterogeneous scenarios, we classify the existing defense algorithms, and provide an in-depth tutorial on the state-of-the-art Byzantine defense schemes, commonly known as robust or secure CSS in the literature. Furthermore, we highlight the unsolved research challenges and depict the future research directions.Comment: Accepted by IEEE Communications Surveys and Tutoiral

    Cyber-Physical Security Strategies

    Get PDF
    Cyber-physical security describes the protection of systems with close relationships between computational functions and physical ones and addresses the issue of vulnerability to attack through both cyber and physical avenues. This describes systems in a wide variety of functions, many crucial to the function of modern society, making their security of paramount importance. The development of secure system design and attack detection strategies for each potential avenue of attack is needed to combat malicious attacks. This thesis will provide an overview of the approaches to securing different aspect of cyber-physical systems. The cyber element can be designed to better prevent unauthorized entry and to be more robust to attack while its use is evaluated for signs of ongoing intrusion. Nodes in sensor networks can be evaluated by their claims to determine the likelihood of their honesty. Control systems can be designed to be robust in cases of the failure of one component and to detect signal insertion or replay attack. Through the application of these strategies, the safety and continued function of cyber-physical systems can be improved

    Design, Implementation and Experiments for Moving Target Defense Framework

    Get PDF
    The traditional defensive security strategy for distributed systems employs well-established defensive techniques such as; redundancy/replications, firewalls, and encryption to prevent attackers from taking control of the system. However, given sufficient time and resources, all these methods can be defeated, especially when dealing with sophisticated attacks from advanced adversaries that leverage zero-day exploits

    A consensus based network intrusion detection system

    Full text link
    Network intrusion detection is the process of identifying malicious behaviors that target a network and its resources. Current systems implementing intrusion detection processes observe traffic at several data collecting points in the network but analysis is often centralized or partly centralized. These systems are not scalable and suffer from the single point of failure, i.e. attackers only need to target the central node to compromise the whole system. This paper proposes an anomaly-based fully distributed network intrusion detection system where analysis is run at each data collecting point using a naive Bayes classifier. Probability values computed by each classifier are shared among nodes using an iterative average consensus protocol. The final analysis is performed redundantly and in parallel at the level of each data collecting point, thus avoiding the single point of failure issue. We run simulations focusing on DDoS attacks with several network configurations, comparing the accuracy of our fully distributed system with a hierarchical one. We also analyze communication costs and convergence speed during consensus phases.Comment: Presented at THE 5TH INTERNATIONAL CONFERENCE ON IT CONVERGENCE AND SECURITY 2015 IN KUALA LUMPUR, MALAYSI

    Intrusion Tolerant Routing Protocols for Wireless Sensor Networks

    Get PDF
    This MSc thesis is focused in the study, solution proposal and experimental evaluation of security solutions for Wireless Sensor Networks (WSNs). The objectives are centered on intrusion tolerant routing services, adapted for the characteristics and requirements of WSN nodes and operation behavior. The main contribution addresses the establishment of pro-active intrusion tolerance properties at the network level, as security mechanisms for the proposal of a reliable and secure routing protocol. Those properties and mechanisms will augment a secure communication base layer supported by light-weigh cryptography methods, to improve the global network resilience capabilities against possible intrusion-attacks on the WSN nodes. Adapting to WSN characteristics, the design of the intended security services also pushes complexity away from resource-poor sensor nodes towards resource-rich and trustable base stations. The devised solution will construct, securely and efficiently, a secure tree-structured routing service for data-dissemination in large scale deployed WSNs. The purpose is to tolerate the damage caused by adversaries modeled according with the Dolev-Yao threat model and ISO X.800 attack typology and framework, or intruders that can compromise maliciously the deployed sensor nodes, injecting, modifying, or blocking packets, jeopardizing the correct behavior of internal network routing processing and topology management. The proposed enhanced mechanisms, as well as the design and implementation of a new intrusiontolerant routing protocol for a large scale WSN are evaluated by simulation. For this purpose, the evaluation is based on a rich simulation environment, modeling networks from hundreds to tens of thousands of wireless sensors, analyzing different dimensions: connectivity conditions, degree-distribution patterns, latency and average short-paths, clustering, reliability metrics and energy cost

    Edge Learning for 6G-enabled Internet of Things: A Comprehensive Survey of Vulnerabilities, Datasets, and Defenses

    Full text link
    The ongoing deployment of the fifth generation (5G) wireless networks constantly reveals limitations concerning its original concept as a key driver of Internet of Everything (IoE) applications. These 5G challenges are behind worldwide efforts to enable future networks, such as sixth generation (6G) networks, to efficiently support sophisticated applications ranging from autonomous driving capabilities to the Metaverse. Edge learning is a new and powerful approach to training models across distributed clients while protecting the privacy of their data. This approach is expected to be embedded within future network infrastructures, including 6G, to solve challenging problems such as resource management and behavior prediction. This survey article provides a holistic review of the most recent research focused on edge learning vulnerabilities and defenses for 6G-enabled IoT. We summarize the existing surveys on machine learning for 6G IoT security and machine learning-associated threats in three different learning modes: centralized, federated, and distributed. Then, we provide an overview of enabling emerging technologies for 6G IoT intelligence. Moreover, we provide a holistic survey of existing research on attacks against machine learning and classify threat models into eight categories, including backdoor attacks, adversarial examples, combined attacks, poisoning attacks, Sybil attacks, byzantine attacks, inference attacks, and dropping attacks. In addition, we provide a comprehensive and detailed taxonomy and a side-by-side comparison of the state-of-the-art defense methods against edge learning vulnerabilities. Finally, as new attacks and defense technologies are realized, new research and future overall prospects for 6G-enabled IoT are discussed
    • …
    corecore